Nejvíce citovaný článek - PubMed ID 10517835
Abscisic acid (ABA) is a plant growth regulator known for its functions, especially in seed maturation, seed dormancy, adaptive responses to biotic and abiotic stresses, and leaf and bud abscission. ABA activity is governed by multiple regulatory pathways that control ABA biosynthesis, signal transduction, and transport. The transport of the ABA signaling molecule occurs from the shoot (site of synthesis) to the fruit (site of action), where ABA receptors decode information as fruit maturation begins and is significantly promoted. The maximum amount of ABA is exported by the phloem from developing fruits during seed formation and initiation of fruit expansion. In the later stages of fruit ripening, ABA export from the phloem decreases significantly, leading to an accumulation of ABA in ripening fruit. Fruit growth, ripening, and senescence are under the control of ABA, and the mechanisms governing these processes are still unfolding. During the fruit ripening phase, interactions between ABA and ethylene are found in both climacteric and non-climacteric fruits. It is clear that ABA regulates ethylene biosynthesis and signaling during fruit ripening, but the molecular mechanism controlling the interaction between ABA and ethylene has not yet been discovered. The effects of ABA and ethylene on fruit ripening are synergistic, and the interaction of ABA with other plant hormones is an essential determinant of fruit growth and ripening. Reaction and biosynthetic mechanisms, signal transduction, and recognition of ABA receptors in fruits need to be elucidated by a more thorough study to understand the role of ABA in fruit ripening. Genetic modifications of ABA signaling can be used in commercial applications to increase fruit yield and quality. This review discusses the mechanism of ABA biosynthesis, its translocation, and signaling pathways, as well as the recent findings on ABA function in fruit development and ripening.
- Klíčová slova
- abscisic acid, biosynthesis, development, ethylene, fruit ripening, regulatory pathways, transport,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Seed development in flowering plants is a critical part of plant life for successful reproduction. The formation of viable seeds requires the synchronous growth and development of the fruit and the three seed structures: the embryo, the endosperm, the seed coat. Molecular communication between these tissues is crucial to coordinate these developmental processes. The phytohormone auxin is a significant player in embryo, seed and fruit development. Its regulated local biosynthesis and its cell-to-cell transport capacity make of auxin the perfect candidate as a signaling molecule to coordinate the growth and development of the embryo, endosperm, seed and fruit. Moreover, newly formed seeds need nutrients and form new carbon sink, generating high sugar flow from vegetative tissues to the seeds. This review will discuss how auxin and sugars may be considered as signaling molecules to coordinate seed and fruit development.
- Klíčová slova
- auxin, embryo, endosperm, fruit, molecular communication, seed, sucrose,
- MeSH
- cukry metabolismus MeSH
- kyseliny indoloctové metabolismus MeSH
- ovoce růst a vývoj metabolismus MeSH
- semena rostlinná růst a vývoj metabolismus MeSH
- signální transdukce * MeSH
- vývoj rostlin * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- cukry MeSH
- kyseliny indoloctové MeSH
Linear modelling approaches detected significant gradients in organ growth and patterning across early flowers of the Arabidopsis inflorescence and uncovered evidence of new roles for gibberellin in floral development. Most flowering plants, including the genetic model Arabidopsis thaliana, produce multiple flowers in sequence from a reproductive shoot apex to form a flower spike (inflorescence). The development of individual flowers on an Arabidopsis inflorescence has typically been considered as highly stereotypical and uniform, but this assumption is contradicted by the existence of mutants with phenotypes visible in early flowers only. This phenomenon is demonstrated by mutants partially impaired in the biosynthesis of the phytohormone gibberellin (GA), in which floral organ growth is retarded in the first flowers to be produced but has recovered spontaneously by the 10th flower. We presently lack systematic data from multiple flowers across the Arabidopsis inflorescence to explain such changes. Using mutants of the GA 20-OXIDASE (GA20ox) GA biosynthesis gene family to manipulate endogenous GA levels, we investigated the dynamics of changing floral organ growth across the early Arabidopsis inflorescence (flowers 1-10). Modelling of floral organ lengths identified a significant, GA-independent gradient of increasing stamen length relative to the pistil in the wild-type inflorescence that was separable from other, GA-dependent effects. It was also found that the first flowers exhibited unstable organ patterning in contrast to later flowers and that this instability was prolonged by exogenous GA treatment. These findings indicate that the development of individual flowers is influenced by hitherto unknown factors acting across the inflorescence and also suggest novel functions for GA in floral patterning.
- Klíčová slova
- Arabidopsis, Flower, Gibberellin (GA), Inflorescence, Modelling,
- MeSH
- Arabidopsis genetika růst a vývoj MeSH
- fenotyp MeSH
- gibereliny metabolismus farmakologie MeSH
- inflorescentia genetika růst a vývoj MeSH
- květy genetika růst a vývoj MeSH
- lineární modely MeSH
- meristém genetika růst a vývoj MeSH
- mutace MeSH
- oxygenasy se smíšenou funkcí genetika metabolismus MeSH
- proteiny huseníčku genetika metabolismus MeSH
- regulátory růstu rostlin metabolismus farmakologie MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- gibberellin, 2-oxoglutarate-oxygen oxidoreductase (20-hydroxylating, oxidizing) MeSH Prohlížeč
- gibereliny MeSH
- oxygenasy se smíšenou funkcí MeSH
- proteiny huseníčku MeSH
- regulátory růstu rostlin MeSH