Nejvíce citovaný článek - PubMed ID 11953334
Probiotics have been used in human and veterinary medicine to increase resistance to pathogens and provide protection against external impacts for many years. Pathogens are often transmitted to humans through animal product consumption. Therefore, it is assumed that probiotics protecting animals may also protect the humans who consume them. Many tested strains of probiotic bacteria can be used for individualized therapy. The recently isolated Lactobacillus plantarum R2 Biocenol™ has proven to be preferential in aquaculture, and potential benefits in humans are expected. A simple oral dosage form should be developed to test this hypothesis by a suitable preparation method, i.e., lyophilization, allowing the bacteria to survive longer. Lyophilizates were formed from silicates (Neusilin® NS2N; US2), cellulose derivates (Avicel® PH-101), and saccharides (inulin; saccharose; modified starch® 1500). They were evaluated for their physicochemical properties (pH leachate, moisture content, water absorption, wetting time, DSC tests, densities, and flow properties); their bacterial viability was determined in conditions including relevant studies over 6 months at 4 °C and scanned under an electron microscope. Lyophilizate composed of Neusilin® NS2N and saccharose appeared to be the most advantageous in terms of viability without any significant decrease. Its physicochemical properties are also suitable for capsule encapsulation, subsequent clinical evaluation, and individualized therapy.
- Klíčová slova
- antropozoonoses, individual treatment, lyophilization, principal component analysis, probiotic bacteria, viability of bacteria,
- Publikační typ
- časopisecké články MeSH
Caco-2 cells (exhibiting characteristics of mature villus enterocytes) were used to determine bacteria (Salmonella enteritidis causing human gastroenteritis)-intestinal cell interactions. The interference of bacteria with the transepithelial electrical resistance (TEER) of filter-grown Caco-2 cells and the production of IL-8 after exposure of the cells to S. enteritidis 857 and/or Lactobacillus strains (L. gasseri LF221 and L. rhamnosus BGT10) was evaluated. The strain 857 decreased TEER of filter-grown Caco-2 cells; in contrast, lactobacilli had a little or no effect. The effect of S. enteritidis on the TEER decreased if Caco-2 cells were pre-incubated with lactobacilli. This strain induced high levels of IL-8 (which can lead to cell damage). Compared to the IL-8 synthesis after exposure of Caco-2 cells to S. enteritidis 857, simultaneous exposure of Caco-2 cells to S. enteritidis and lactobacilli inhibited the IL-8 synthesis after short recovery periods.
- MeSH
- Caco-2 buňky metabolismus mikrobiologie MeSH
- elektrická impedance MeSH
- interleukin-8 metabolismus MeSH
- Lactobacillus fyziologie MeSH
- lidé MeSH
- Salmonella enteritidis patogenita MeSH
- salmonelóza imunologie MeSH
- slizniční imunita MeSH
- střevní sliznice metabolismus mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-8 MeSH