Most cited article - PubMed ID 12422507
Atypical location of double-strand origin of replication (nic site) on the plasmid pGA1 from Corynebacterium glutamicum
The cryptic multicopy plasmid pGA1 (4,826 bp) from Corynebacterium glutamicum LP-6 belongs to the fifth group of rolling-circle-replicating plasmids. A determinant, which negatively controls pGA1 replication, was localized in the leader region of the rep gene coding for the initiator of plasmid replication. This region, when cloned into the compatible vector pEC6, was found to cause decrease of segregational stability of the pGA1 derivative pKG48. A promoter and a single transcriptional start site were found in the rep leader region in orientation opposite to the rep gene. These results suggest that a small countertranscribed RNA (ctRNA) (ca. 89 nucleotides in length), which might inhibit translation of pGA1 rep gene, is formed. Analysis of predicted secondary structure of the pGA1-encoded ctRNA revealed features common with the known ctRNAs in bacteria. Inactivation of the promoter P-ctRNA caused a dramatic increase of copies of the respective plasmid, which proved a negative role of the ctRNA in control of pGA1 copy number. A region between the promoters Prep and P-ctRNA with a potential to form secondary structures on both ctRNA and rep mRNA was found to cause low activity of the rep promoter even when promoter P-ctRNA was deleted. Thus, the sequence within the rep leader region itself seems to act, in addition to the ctRNA, as a second regulatory element of a novel type, negatively influencing expression of the pGA1 rep gene.
- MeSH
- RNA, Bacterial MeSH
- Corynebacterium genetics MeSH
- DNA, Bacterial biosynthesis genetics MeSH
- Nucleic Acid Conformation MeSH
- Molecular Sequence Data MeSH
- Plasmids biosynthesis genetics MeSH
- Promoter Regions, Genetic MeSH
- Gene Expression Regulation, Bacterial * MeSH
- Base Sequence MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- RNA, Bacterial MeSH
- DNA, Bacterial MeSH