Nejvíce citovaný článek - PubMed ID 12629179
A plethora of neurological disorders shares a final common deadly pathway known as excitotoxicity. Among these disorders, ischemic injury is a prominent cause of death and disability worldwide. Brain ischemia stems from cardiac arrest or stroke, both responsible for insufficient blood supply to the brain parenchyma. Glucose and oxygen deficiency disrupts oxidative phosphorylation, which results in energy depletion and ionic imbalance, followed by cell membrane depolarization, calcium (Ca2+) overload, and extracellular accumulation of excitatory amino acid glutamate. If tight physiological regulation fails to clear the surplus of this neurotransmitter, subsequent prolonged activation of glutamate receptors forms a vicious circle between elevated concentrations of intracellular Ca2+ ions and aberrant glutamate release, aggravating the effect of this ischemic pathway. The activation of downstream Ca2+-dependent enzymes has a catastrophic impact on nervous tissue leading to cell death, accompanied by the formation of free radicals, edema, and inflammation. After decades of "neuron-centric" approaches, recent research has also finally shed some light on the role of glial cells in neurological diseases. It is becoming more and more evident that neurons and glia depend on each other. Neuronal cells, astrocytes, microglia, NG2 glia, and oligodendrocytes all have their roles in what is known as glutamate excitotoxicity. However, who is the main contributor to the ischemic pathway, and who is the unsuspecting victim? In this review article, we summarize the so-far-revealed roles of cells in the central nervous system, with particular attention to glial cells in ischemia-induced glutamate excitotoxicity, its origins, and consequences.
- Klíčová slova
- NG2 glia, astrocytes, cell death, glutamate excitotoxicity, glutamate receptors and transporters, glutamate uptake/release, ischemic pathway, oligodendrocytes,
- Publikační typ
- časopisecké články MeSH
Brain edema accompanying ischemic or traumatic brain injuries, originates from a disruption of ionic/neurotransmitter homeostasis that leads to accumulation of K(+) and glutamate in the extracellular space. Their increased uptake, predominantly provided by astrocytes, is associated with water influx via aquaporin-4 (AQP4). As the removal of perivascular AQP4 via the deletion of α-syntrophin was shown to delay edema formation and K(+) clearance, we aimed to elucidate the impact of α-syntrophin knockout on volume changes in individual astrocytes in situ evoked by pathological stimuli using three dimensional confocal morphometry and changes in the extracellular space volume fraction (α) in situ and in vivo in the mouse cortex employing the real-time iontophoretic method. RT-qPCR profiling was used to reveal possible differences in the expression of ion channels/transporters that participate in maintaining ionic/neurotransmitter homeostasis. To visualize individual astrocytes in mice lacking α-syntrophin we crossbred GFAP/EGFP mice, in which the astrocytes are labeled by the enhanced green fluorescent protein under the human glial fibrillary acidic protein promoter, with α-syntrophin knockout mice. Three-dimensional confocal morphometry revealed that α-syntrophin deletion results in significantly smaller astrocyte swelling when induced by severe hypoosmotic stress, oxygen glucose deprivation (OGD) or 50 mM K(+). As for the mild stimuli, such as mild hypoosmotic or hyperosmotic stress or 10 mM K(+), α-syntrophin deletion had no effect on astrocyte swelling. Similarly, evaluation of relative α changes showed a significantly smaller decrease in α-syntrophin knockout mice only during severe pathological conditions, but not during mild stimuli. In summary, the deletion of α-syntrophin markedly alters astrocyte swelling during severe hypoosmotic stress, OGD or high K(+).
- MeSH
- akvaporin 4 genetika metabolismus MeSH
- astrocyty metabolismus patologie MeSH
- biologický transport MeSH
- draslík metabolismus MeSH
- draslíkové kanály genetika metabolismus MeSH
- edém mozku genetika metabolismus patologie MeSH
- gliový fibrilární kyselý protein MeSH
- glukosa nedostatek MeSH
- konfokální mikroskopie MeSH
- membránové proteiny nedostatek genetika MeSH
- mikrotomie MeSH
- mozková kůra metabolismus patologie MeSH
- myši transgenní MeSH
- myši MeSH
- osmolární koncentrace MeSH
- osmotický tlak MeSH
- promotorové oblasti (genetika) MeSH
- proteiny nervové tkáně genetika metabolismus MeSH
- proteiny vázající vápník nedostatek genetika MeSH
- regulace genové exprese MeSH
- signální transdukce MeSH
- stereotaktické techniky MeSH
- svalové proteiny nedostatek genetika MeSH
- techniky tkáňových kultur MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- akvaporin 4 MeSH
- Aqp4 protein, mouse MeSH Prohlížeč
- draslík MeSH
- draslíkové kanály MeSH
- enhanced green fluorescent protein MeSH Prohlížeč
- glial fibrillary astrocytic protein, mouse MeSH Prohlížeč
- gliový fibrilární kyselý protein MeSH
- glukosa MeSH
- membránové proteiny MeSH
- proteiny nervové tkáně MeSH
- proteiny vázající vápník MeSH
- svalové proteiny MeSH
- syntrophin alpha1 MeSH Prohlížeč
- zelené fluorescenční proteiny MeSH
Astrocytes perform control and regulatory functions in the central nervous system; heterogeneity among them is still a matter of debate due to limited knowledge of their gene expression profiles and functional diversity. To unravel astrocyte heterogeneity during postnatal development and after focal cerebral ischemia, we employed single-cell gene expression profiling in acutely isolated cortical GFAP/EGFP-positive cells. Using a microfluidic qPCR platform, we profiled 47 genes encoding glial markers and ion channels/transporters/receptors participating in maintaining K(+) and glutamate homeostasis per cell. Self-organizing maps and principal component analyses revealed three subpopulations within 10-50 days of postnatal development (P10-P50). The first subpopulation, mainly immature glia from P10, was characterized by high transcriptional activity of all studied genes, including polydendrocytic markers. The second subpopulation (mostly from P20) was characterized by low gene transcript levels, while the third subpopulation encompassed mature astrocytes (mainly from P30, P50). Within 14 days after ischemia (D3, D7, D14), additional astrocytic subpopulations were identified: resting glia (mostly from P50 and D3), transcriptionally active early reactive glia (mainly from D7) and permanent reactive glia (solely from D14). Following focal cerebral ischemia, reactive astrocytes underwent pronounced changes in the expression of aquaporins, nonspecific cationic and potassium channels, glutamate receptors and reactive astrocyte markers.
- MeSH
- antigeny genetika metabolismus MeSH
- astrocyty metabolismus MeSH
- gliový fibrilární kyselý protein genetika metabolismus MeSH
- imunohistochemie MeSH
- mozková kůra cytologie metabolismus MeSH
- myši transgenní MeSH
- myši MeSH
- neuroglie cytologie metabolismus MeSH
- polymerázová řetězová reakce MeSH
- proteoglykany genetika metabolismus MeSH
- průtoková cytometrie MeSH
- S-100 kalcium vázající protein G, podjednotka beta genetika metabolismus MeSH
- zelené fluorescenční proteiny genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny MeSH
- chondroitin sulfate proteoglycan 4 MeSH Prohlížeč
- enhanced green fluorescent protein MeSH Prohlížeč
- gliový fibrilární kyselý protein MeSH
- proteoglykany MeSH
- S-100 kalcium vázající protein G, podjednotka beta MeSH
- zelené fluorescenční proteiny MeSH
Pathological states in the central nervous system lead to dramatic changes in the activity of neuroactive substances in the extracellular space, to changes in ionic homeostasis and often to cell swelling. To quantify changes in cell morphology over a certain period of time, we employed a new technique, three-dimensional confocal morphometry. In our experiments, performed on enhanced green fluorescent protein/glial fibrillary acidic protein astrocytes in brain slices in situ and thus preserving the extracellular microenvironment, confocal morphometry revealed that the application of hypotonic solution evoked two types of volume change. In one population of astrocytes, hypotonic stress evoked small cell volume changes followed by a regulatory volume decrease, while in the second population volume changes were significantly larger without subsequent volume regulation. Three-dimensional cell reconstruction revealed that even though the total astrocyte volume increased during hypotonic stress, the morphological changes in various cell compartments and processes were more complex than have been previously shown, including swelling, shrinking and structural rearrangement. Our data show that astrocytes in brain slices in situ during hypotonic stress display complex behaviour. One population of astrocytes is highly capable of cell volume regulation, while the second population is characterized by prominent cell swelling, accompanied by plastic changes in morphology. It is possible to speculate that these two astrocyte populations play different roles during physiological and pathological states.
- MeSH
- astrocyty patologie ultrastruktura MeSH
- geneticky modifikovaná zvířata MeSH
- gliový fibrilární kyselý protein analýza MeSH
- konfokální mikroskopie metody MeSH
- lidé MeSH
- modely u zvířat MeSH
- mozek patologie ultrastruktura MeSH
- myši MeSH
- nemoci mozku patologie MeSH
- zelené fluorescenční proteiny MeSH
- zobrazování trojrozměrné * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- gliový fibrilární kyselý protein MeSH
- zelené fluorescenční proteiny MeSH
[K(+)](e) increase accompanies many pathological states in the CNS and evokes changes in astrocyte morphology and glial fibrillary acidic protein expression, leading to astrogliosis. Changes in the electrophysiological properties and volume regulation of astrocytes during the early stages of astrocytic activation were studied using the patch-clamp technique in spinal cords from 10-day-old rats after incubation in 50 mM K(+). In complex astrocytes, incubation in high K(+) caused depolarization, an input resistance increase, a decrease in membrane capacitance, and an increase in the current densities (CDs) of voltage-dependent K(+) and Na(+) currents. In passive astrocytes, the reversal potential shifted to more positive values and CDs decreased. No changes were observed in astrocyte precursors. Under hypotonic stress, astrocytes in spinal cords pre-exposed to high K(+) revealed a decreased K(+) accumulation around the cell membrane after a depolarizing prepulse, suggesting altered volume regulation. 3D confocal morphometry and the direct visualization of astrocytes in enhanced green fluorescent protein/glial fibrillary acidic protein mice showed a smaller degree of cell swelling in spinal cords pre-exposed to high K(+) compared to controls. We conclude that exposure to high K(+), an early event leading to astrogliosis, caused not only morphological changes in astrocytes but also changes in their membrane properties and cell volume regulation.
- MeSH
- astrocyty fyziologie MeSH
- draslík farmakokinetika MeSH
- draslíkové kanály řízené napětím fyziologie MeSH
- gliový fibrilární kyselý protein metabolismus MeSH
- glióza patofyziologie MeSH
- hypotonické roztoky farmakologie MeSH
- imunohistochemie MeSH
- koncentrace vodíkových iontů MeSH
- krysa rodu Rattus MeSH
- membránové potenciály účinky léků fyziologie MeSH
- metoda terčíkového zámku MeSH
- mícha cytologie MeSH
- osmotický tlak MeSH
- potkani Wistar MeSH
- sodík metabolismus MeSH
- sodíkové kanály fyziologie MeSH
- velikost buňky MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- draslík MeSH
- draslíkové kanály řízené napětím MeSH
- gliový fibrilární kyselý protein MeSH
- hypotonické roztoky MeSH
- sodík MeSH
- sodíkové kanály MeSH