Nejvíce citovaný článek - PubMed ID 12694560
Pollen germination and subsequent pollen tube elongation are essential for successful land plant reproduction. These processes are achieved through well-documented activation of membrane trafficking and cell metabolism. Despite this, our knowledge of the dynamics of cellular phospholipids remains scarce. Here we present the turnover of the glycerolipid composition during the establishment of cell polarity and elongation processes in tobacco pollen and show the lipid composition of pollen plasma membrane-enriched fraction for the first time. To achieve this, we have combined several techniques, such as lipidomics, plasma membrane isolation, and live-cell microscopy, and performed a study with different time points during the pollen germination and pollen tube growth. Our results showed that tobacco pollen tubes undergo substantial changes in their whole-cell lipid composition during the pollen germination and growth, finding differences in most of the glycerolipids analyzed. Notably, while lysophospholipid levels decrease during germination and growth, phosphatidic acid increases significantly at cell polarity establishment and continues with similar abundance in cell elongation. We corroborated these findings by measuring several phospholipase activities in situ. We also observed that lysophospholipids and phosphatidic acid are more abundant in the plasma membrane-enriched fraction than that in the whole cell. Our results support the important role for the phosphatidic acid in the establishment and maintenance of cellular polarity in tobacco pollen tubes and indicate that plasma membrane lysophospholipids may be involved in pollen germination.
- Klíčová slova
- lipidomics, phosphatidic acid, phospholipid, plasma membrane, pollen, pollen tube, tip growth, tobacco,
- Publikační typ
- časopisecké články MeSH
Phosphoglycerolipids are essential structural constituents of membranes and some also have important cell signalling roles. In this review, we focus on phosphoglycerolipids that are mediators in hormone signal transduction in plants. We first describe the structures of the main signalling phosphoglycerolipids and the metabolic pathways that generate them, namely the phospholipase and lipid kinase pathways. In silico analysis of Arabidopsis transcriptome data provides evidence that the genes encoding the enzymes of these pathways are transcriptionally regulated in responses to hormones, suggesting some link with hormone signal transduction. The involvement of phosphoglycerolipid signalling in the early responses to abscisic acid, salicylic acid and auxins is then detailed. One of the most important signalling lipids in plants is phosphatidic acid. It can activate or inactivate protein kinases and/or protein phosphatases involved in hormone signalling. It can also activate NADPH oxidase leading to the production of reactive oxygen species. We will interrogate the mechanisms that allow the activation/deactivation of the lipid pathways, in particular the roles of G proteins and calcium. Mediating lipids thus appear as master players of cell signalling, modulating, if not controlling, major transducing steps of hormone signals.
- MeSH
- Arabidopsis fyziologie MeSH
- fosfolipasy metabolismus MeSH
- fosfotransferasy metabolismus MeSH
- glycerofosfolipidy metabolismus MeSH
- kyselina abscisová metabolismus MeSH
- kyseliny fosfatidové metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny MeSH
- signální transdukce fyziologie MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- fosfolipasy MeSH
- fosfotransferasy MeSH
- glycerofosfolipidy MeSH
- kyselina abscisová MeSH
- kyseliny fosfatidové MeSH
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH