-
Autor
Aeilts, Amber M 1 Aittomäki, Kristiina 1 Andrieu, Nadine 1 Andrulis, Irene L 1 Anton-Culver, Hoda 1 Antoniou, Antonis C 1 Arason, Adalgeir 1 Arun, Banu K 1 Balmaña, Judith 1 Bandera, Elisa V 1 Barkardottir, Rosa B 1 Barnes, Daniel R 1 Berchuck, Andrew 1 Berger, Lieke P V 1 Berthet, Pascaline 1 Białkowska, Katarzyna 1 Bjørge, Line 1 Blanco, Amie M 1 Blok, Marinus J 1 Bobolis, Kristie A 1
- Organizace
-
Pracoviště
Adult Cancer Program Lowy Cancer Research Ce... 1 Aix Marseille Université INSERM IRD SESSTIM ... 1 AnaNeo Therapeutics New York NY USA 1 Assuta Medical Center Tel Aviv Israel 1 BMC Faculty of Medicine University of Icelan... 1 Basser Center for BRCA Abramson Cancer Cente... 1 British Columbia's Ovarian Cancer Research P... 1 Cancer Epidemiology Division Cancer Council ... 1 Cancer Epidemiology Division Cancer Council ... 1 Cancer Genetics Group IPO Porto Research Cen... 1 Cancer Genetics Laboratory Peter MacCallum C... 1 Cancer Genetics and Prevention Program Unive... 1 Cancer Prevention and Control Program Rutger... 1 Cancer Registry of Norway Norwegian Institut... 1 Cancer Research Institute Ghent Ghent Belgium 1 Cancer Research UK Cambridge Institute Unive... 1 Carmel Medical Center Haifa Israel 1 Center for Bioinformatics and Functional Gen... 1 Center for Clinical Cancer Genetics The Univ... 1 Center for Familial Breast and Ovarian Cance... 1
- Publikační typ
- Kategorie
- Jazyk
- Země
- Časopis/zdroj
- Grant - země
- Grantová podpora
- Nejvíce citované
Nejvíce citovaný článek - PubMed ID 12845634
PubMed
38496424
PubMed Central
PMC10942532
DOI
10.1101/2024.02.29.24303243
PII: 2024.02.29.24303243
Knihovny.cz E-zdroje
BACKGROUND: Nineteen genomic regions have been associated with high-grade serous ovarian cancer (HGSOC). We used data from the Ovarian Cancer Association Consortium (OCAC), Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA), UK Biobank (UKBB), and FinnGen to identify novel HGSOC susceptibility loci and develop polygenic scores (PGS). METHODS: We analyzed >22 million variants for 398,238 women. Associations were assessed separately by consortium and meta-analysed. OCAC and CIMBA data were used to develop PGS which were trained on FinnGen data and validated in UKBB and BioBank Japan. RESULTS: Eight novel variants were associated with HGSOC risk. An interesting discovery biologically was finding that TP53 3'-UTR SNP rs78378222 was associated with HGSOC (per T allele relative risk (RR)=1.44, 95%CI:1.28-1.62, P=1.76×10-9). The optimal PGS included 64,518 variants and was associated with an odds ratio of 1.46 (95%CI:1.37-1.54) per standard deviation in the UKBB validation (AUROC curve=0.61, 95%CI:0.59-0.62). CONCLUSIONS: This study represents the largest GWAS for HGSOC to date. The results highlight that improvements in imputation reference panels and increased sample sizes can identify HGSOC associated variants that previously went undetected, resulting in improved PGS. The use of updated PGS in cancer risk prediction algorithms will then improve personalized risk prediction for HGSOC.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Upřesnit dle MeSH
Sdílet
Název dokumentu
Po ukončení testovacího provozu bude odkaz přesměrován adresu produkční verze portálu Medvik.