Nejvíce citovaný článek - PubMed ID 15521462
The transition from sexual reproduction to asexuality is often triggered by hybridization. The gametogenesis of many hybrid asexuals involves premeiotic genome endoreplication leading to bypass hybrid sterility and forming clonal gametes. However, it is still not clear when endoreplication occurs, how many gonial cells it affects and whether its rate differs among clonal lineages. Here, we investigated meiotic and premeiotic cells of diploid and triploid hybrids of spined loaches (Cypriniformes: Cobitis) that reproduce by gynogenesis. We found that in naturally and experimentally produced F1 hybrids asexuality is achieved by genome endoreplication, which occurs in gonocytes just before entering meiosis or, rarely, one or a few divisions before meiosis. However, genome endoreplication was observed only in a minor fraction of the hybrid's gonocytes, while the vast majority of gonocytes were unable to duplicate their genomes and consequently could not proceed beyond pachytene due to defects in bivalent formation. We also noted that the rate of endoreplication was significantly higher among gonocytes of hybrids from natural clones than of experimentally produced F1 hybrids. Thus, asexuality and hybrid sterility are intimately related phenomena and the transition from sexual reproduction to asexuality must overcome significant problems with genome incompatibilities with a possible impact on reproductive potential.
- Klíčová slova
- Cobitis taenia complex, endoreplication, gynogenesis, hybrid sterility, meiosis, polyploidy,
- MeSH
- gametogeneze genetika MeSH
- hybridizace genetická MeSH
- křížení genetické MeSH
- máloostní genetika růst a vývoj MeSH
- meióza genetika MeSH
- nepohlavní rozmnožování genetika MeSH
- rozmnožování genetika MeSH
- Taenia genetika růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
The classical definition posits hybrid sterility as a phenomenon when two parental taxa each of which is fertile produce a hybrid that is sterile. The first hybrid sterility gene in vertebrates, Prdm9, coding for a histone methyltransferase, was identified in crosses between two laboratory mouse strains derived from Mus mus musculus and M. m. domesticus subspecies. The unique function of PRDM9 protein in the initiation of meiotic recombination led to the discovery of the basic molecular mechanism of hybrid sterility in laboratory crosses. However, the role of this protein as a component of reproductive barrier outside the laboratory model remained unclear. Here, we show that the Prdm9 allelic incompatibilities represent the primary cause of reduced fertility in intersubspecific hybrids between M. m. musculus and M. m. domesticus including 16 musculus and domesticus wild-derived strains. Disruption of fertility phenotypes correlated with the rate of failure of synapsis between homologous chromosomes in meiosis I and with early meiotic arrest. All phenotypes were restored to normal when the domesticus Prdm9dom2 allele was substituted with the Prdm9dom2H humanized variant. To conclude, our data show for the first time the male infertility of wild-derived musculus and domesticus subspecies F1 hybrids controlled by Prdm9 as the major hybrid sterility gene. The impairment of fertility surrogates, testes weight and sperm count, correlated with increasing difficulties of meiotic synapsis of homologous chromosomes and with meiotic arrest, which we suppose reflect the increasing asymmetry of PRDM9-dependent DNA double-strand breaks.
- Klíčová slova
- Prdm9 polymorphism, HORMAD2, meiotic chromosome synapsis, reproductive isolation, synaptonemal complex,
- MeSH
- fylogeografie MeSH
- genová introgrese * MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- infertilita genetika MeSH
- meióza MeSH
- myši genetika MeSH
- reprodukční izolace * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši genetika MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
F1 hybrids between mouse inbred strains PWD and C57BL/6 represent the most thoroughly genetically defined model of hybrid sterility in vertebrates. Hybrid male sterility can be fully reconstituted from three components of this model, the Prdm9 gene, intersubspecific homeology of Mus musculus musculus and Mus musculus domesticus autosomes, and the X-linked Hstx2 locus. Hstx2 modulates the extent of Prdm9-dependent meiotic arrest and harbors two additional factors responsible for intersubspecific introgression-induced oligospermia (Hstx1) and meiotic recombination rate (Meir1). To facilitate positional cloning and to overcome the recombination suppression within the 4.3 Mb encompassing the Hstx2 locus, we designed Hstx2-CRISPR and SPO11/Cas9 transgenes aimed to induce DNA double-strand breaks specifically within the Hstx2 locus. The resulting recombinant reduced the Hstx2 locus to 2.70 Mb (chromosome X: 66.51-69.21 Mb). The newly defined Hstx2 locus still operates as the major X-linked factor of the F1 hybrid sterility, and controls meiotic chromosome synapsis and meiotic recombination rate. Despite extensive further crosses, the 2.70 Mb Hstx2 interval behaved as a recombination cold spot with reduced PRDM9-mediated H3K4me3 hotspots and absence of DMC1-defined DNA double-strand-break hotspots. To search for structural anomalies as a possible cause of recombination suppression, we used optical mapping and observed high incidence of subspecies-specific structural variants along the X chromosome, with a striking copy number polymorphism of the microRNA Mir465 cluster. This observation together with the absence of a strong sterility phenotype in Fmr1 neighbor (Fmr1nb) null mutants support the role of microRNA as a likely candidate for Hstx2.
- Klíčová slova
- Bionano optical mapping, Fmr1nb, Hybrid sterility X2, Prdm9, SPO11Cas9 transgene, Speciation,
- MeSH
- chromozom X genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- homologní rekombinace MeSH
- meióza MeSH
- mikro RNA genetika MeSH
- modifikátorové geny * MeSH
- mužská infertilita genetika MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- polymorfismus genetický * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- mikro RNA MeSH
- prdm9 protein, mouse MeSH Prohlížeč
The X and Z sex chromosomes play a disproportionately large role in intrinsic postzygotic isolation. The underlying mechanisms of this large X/Z effect are, however, still poorly understood. Here we tested whether faster rates of molecular evolution caused by more intense positive selection or genetic drift on the Z chromosome could contribute to the large Z effect in two closely related passerine birds, the Common Nightingale (Luscinia megarhynchos) and the Thrush Nightingale (L. luscinia). We found that the two species differ in patterns of molecular evolution on the Z chromosome. The Z chromosome of L. megarhynchos showed lower levels of within-species polymorphism and an excess of non-synonymous polymorphisms relative to non-synonymous substitutions. This is consistent with increased levels of genetic drift on this chromosome and may be attributed to more intense postcopulatory sexual selection acting on L. megarhynchos males as was indicated by significantly longer sperm and higher between-male variation in sperm length in L. megarhynchos compared to L. luscinia. Interestingly, analysis of interspecific gene flow on the Z chromosome revealed relatively lower levels of introgression from L. megarhynchos to L. luscinia than vice versa, indicating that the Z chromosome of L. megarhynchos accumulated more hybrid incompatibilities. Our results are consistent with the view that postcopulatory sexual selection may reduce the effective population size of the Z chromosome and thus lead to stronger genetic drift on this chromosome in birds. This can result in relatively faster accumulation of hybrid incompatibilities on the Z and thus contribute to the large Z effect.
- MeSH
- druhová specificita MeSH
- genetická variace MeSH
- genetický drift MeSH
- molekulární evoluce MeSH
- pohlavní chromozomy genetika MeSH
- sexuální výběr u zvířat * MeSH
- spermie cytologie MeSH
- tok genů MeSH
- vznik druhů (genetika) MeSH
- zpěvní ptáci genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hybrid zones between divergent populations sieve genomes into blocks that introgress across the zone, and blocks that do not, depending on selection between interacting genes. Consistent with Haldane's rule, the Y chromosome has been considered counterselected and hence not to introgress across the European house mouse hybrid zone. However, recent studies detected massive invasion of M. m. musculus Y chromosomes into M. m. domesticus territory. To understand mechanisms facilitating Y spread, we created 31 recombinant lines from eight wild-derived strains representing four localities within the two mouse subspecies. These lines were reciprocally crossed and resulting F1 hybrid males scored for five phenotypic traits associated with male fitness. Molecular analyses of 51 Y-linked SNPs attributed ~50% of genetic variation to differences between the subspecies and 8% to differentiation within both taxa. A striking proportion, 21% (frequencies of sperm head abnormalities) and 42% (frequencies of sperm tail dissociations), of phenotypic variation was explained by geographic Y chromosome variants. Our crossing design allowed this explanatory power to be examined across a hierarchical scale from subspecific to local intrastrain effects. We found that divergence and variation were expressed diversely in different phenotypic traits and varied across the whole hierarchical scale. This finding adds another dimension of complexity to studies of Y introgression not only across the house mouse hybrid zone but potentially also in other contact zones.
- Klíčová slova
- Mus musculus domesticus, Mus musculus musculus, Y‐associated effects, phenotype variation, sperm quality, wild‐derived strain,
- Publikační typ
- časopisecké články MeSH
Reproductive isolation is crucial for the process of speciation to progress. Sex chromosomes have been assigned a key role in driving reproductive isolation but empirical evidence from natural population processes has been restricted to organisms with degenerated sex chromosomes such as mammals and birds. Here we report restricted introgression at sex-linked compared to autosomal markers in a hybrid zone between two incipient species of European tree frog, Hyla arborea and H. orientalis, whose homologous X and Y sex chromosomes are undifferentiated. This large X-effect cannot result from the dominance or faster-X aspects of Haldane's rule, which are specific to degenerated sex chromosomes, but rather supports a role for faster-heterogametic-sex or faster-male evolutionary processes. Our data suggest a prominent contribution of undifferentiated sex chromosomes to speciation.
- MeSH
- chromozom X genetika MeSH
- chromozom Y genetika MeSH
- Ranidae MeSH
- sexuální diferenciace genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PR-domain 9 (Prdm9) is the first hybrid sterility gene identified in mammals. The incompatibility between Prdm9 from Mus musculus domesticus (Mmd; the B6 strain) and the Hstx2 region of chromosome (Chr) X from M. m. musculus (Mmm; the PWD strain) participates in the complete meiotic arrest of mouse intersubspecific (PWD×B6)F1 hybrid males. Other studies suggest that also semisterile intersubspecific hybrids are relevant for mouse speciation, but the genes responsible remain unknown. To investigate the causes of this semisterility, we analyzed the role of Prdm9 and Chr X in hybrids resulting from the crosses of PWK, another Mmm-derived inbred strain. We demonstrate that Prdm9 and Chr X control the partial meiotic arrest and reduced sperm count in (PWK×B6)F1 males. Asynapsis of heterosubspecific chromosomes and semisterility were partially suppressed by removal of the B6 allele of Prdm9. Polymorphisms between PWK and PWD on Chr X but not in the Prdm9 region were responsible for the modification of the outcome of Prdm9-Chr X F1 hybrid incompatibility. Furthermore, (PWK×B6)F1 hybrid males displayed delayed fertility dependent on the Prdm9 incompatibility. While the Drosophila hybrid sterility gene Overdrive causes both delayed fertility and increased transmission of its own chromosome to the offspring, the segregation of Chr X and the Prdm9 region from the mouse (PWK×B6)F1 males was normal. Our results indicate extended functional consequences of Prdm9-Chr X intersubspecific incompatibility on the fertility of hybrids and should influence the design of fertility analyses in hybrid zones and of laboratory crosses between Mmm and Mmd strains.
- MeSH
- alely MeSH
- fenotyp MeSH
- genotyp MeSH
- genová dávka MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- křížení genetické * MeSH
- lokus kvantitativního znaku MeSH
- meióza MeSH
- mužská infertilita genetika MeSH
- myši MeSH
- oligospermie genetika MeSH
- savčí chromozomy MeSH
- testis metabolismus patologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
Hybrid sterility (HS) belongs to reproductive isolation barriers that safeguard the integrity of species in statu nascendi. Although hybrid sterility occurs almost universally among animal and plant species, most of our current knowledge comes from the classical genetic studies on Drosophila interspecific crosses or introgressions. With the house mouse subspecies Mus m. musculus and Mus m. domesticus as a model, new research tools have become available for studies of the molecular mechanisms and genetic networks underlying HS. Here we used QTL analysis and intersubspecific chromosome substitution strains to identify a 4.7 Mb critical region on Chromosome X (Chr X) harboring the Hstx2 HS locus, which causes asymmetrical spermatogenic arrest in reciprocal intersubspecific F1 hybrids. Subsequently, we mapped autosomal loci on Chrs 3, 9 and 13 that can abolish this asymmetry. Combination of immunofluorescent visualization of the proteins of synaptonemal complexes with whole-chromosome DNA FISH on pachytene spreads revealed that heterosubspecific, unlike consubspecific, homologous chromosomes are predisposed to asynapsis in F1 hybrid male and female meiosis. The asynapsis is under the trans- control of Hstx2 and Hst1/Prdm9 hybrid sterility genes in pachynemas of male but not female hybrids. The finding concurred with the fertility of intersubpecific F1 hybrid females homozygous for the Hstx2(Mmm) allele and resolved the apparent conflict with the dominance theory of Haldane's rule. We propose that meiotic asynapsis in intersubspecific hybrids is a consequence of cis-acting mismatch between homologous chromosomes modulated by the trans-acting Hstx2 and Prdm9 hybrid male sterility genes.
- MeSH
- chromozom X genetika MeSH
- genetické lokusy genetika MeSH
- histonlysin-N-methyltransferasa genetika MeSH
- hybridizace genetická MeSH
- lidé MeSH
- lokus kvantitativního znaku genetika MeSH
- meióza MeSH
- mužská infertilita genetika MeSH
- myši MeSH
- párování chromozomů genetika MeSH
- reprodukční izolace MeSH
- synaptonemální komplex genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- histonlysin-N-methyltransferasa MeSH
- prdm9 protein, mouse MeSH Prohlížeč
Two house mouse subspecies occur in Europe, eastern and northern Mus musculus musculus (Mmm) and western and southern Mus musculus domesticus (Mmd). A secondary hybrid zone occurs where their ranges meet, running from Scandinavia to the Black Sea. In this paper, we tested a hypothesis that the apicomplexan protozoan species Cryptosporidium tyzzeri has coevolved with the house mouse. More specifically, we assessed to what extent the evolution of this parasite mirrors divergence of the two subspecies. In order to test this hypothesis, we analysed sequence variation at five genes (ssrRNA, Cryptosporidium oocyst wall protein (COWP), thrombospondin-related adhesive protein of Cryptosporidium 1 (TRAP-C1), actin and gp60) in C. tyzzeri isolates from Mmd and Mmm sampled along a transect across the hybrid zone from the Czech Republic to Germany. Mmd samples were supplemented with mice from New Zealand. We found two distinct isolates of C. tyzzeri, each occurring exclusively in one of the mouse subspecies (C. tyzzeri-Mmm and C. tyzzeri-Mmd). In addition to genetic differentiation, oocysts of the C. tyzzeri-Mmd subtype (mean: 4.24×3.69μm) were significantly smaller than oocysts of C. tyzzeri-Mmm (mean: 4.49×3.90 μm). Mmm and Mmd were susceptible to experimental infection with both C. tyzzeri subtypes; however, the subtypes were not infective for the rodent species Meriones unguiculatus, Mastomys coucha, Apodemus flavicollis or Cavia porcellus. Overall, our results support the hypothesis that C. tyzzeri is coevolving with Mmm and Mmd.
- Klíčová slova
- Coevolution, Cryptosporidium tyzzeri, House mouse, Hybrid zone, Mus musculus domesticus, Mus musculus musculus,
- MeSH
- biologická evoluce * MeSH
- Cryptosporidium klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genotyp MeSH
- kryptosporidióza veterinární MeSH
- molekulární sekvence - údaje MeSH
- myši MeSH
- nemoci hlodavců parazitologie MeSH
- protozoální proteiny genetika MeSH
- RNA ribozomální 18S genetika MeSH
- sekvenční analýza DNA MeSH
- shluková analýza MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Česká republika MeSH
- Německo MeSH
- Názvy látek
- protozoální proteiny MeSH
- RNA ribozomální 18S MeSH
The house mouse hybrid zone (HMHZ) is a species barrier thought to be maintained by a balance between dispersal and natural selection against hybrids. While the HMHZ is characterized by frequency discontinuities for some sex chromosome markers, there is an unexpected large-scale regional introgression of a Y chromosome across the barrier, in defiance of Haldane's rule. Recent work suggests that a major force maintaining the species barrier acts through sperm traits. Here, we test whether the Y chromosome penetration of the species barrier acts through sperm traits by assessing sperm characteristics of wild-caught males directly in a field laboratory set up in a Y introgression region of the HMHZ, later calculating the hybrid index of each male using 1401 diagnostic single nucleotide polymorphisms (SNPs). We found that both sperm count (SC) and sperm velocity were significantly reduced across the natural spectrum of hybrids. However, SC was more than rescued in the presence of the invading Y. Our results imply an asymmetric advantage for Y chromosome introgression consistent with the observed large-scale introgression. We suggest that selection on sperm-related traits probably explains a large component of patterns observed in the natural hybrid zone, including the Y chromosome penetration.
- MeSH
- chromozom Y * MeSH
- druhová specificita MeSH
- fenotyp MeSH
- hybridizace genetická * MeSH
- jednonukleotidový polymorfismus MeSH
- modely genetické MeSH
- myši fyziologie MeSH
- selekce (genetika) MeSH
- spermie fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši fyziologie MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH