Nejvíce citovaný článek - PubMed ID 15790854
Probiotics are a potential strategy for salmonellosis control. A defined pig microbiota (DPM) mixture of nine bacterial strains previously exhibited probiotic and anti-Salmonella properties in vitro. Therefore, we evaluated its gut colonization ability and protection effect against S. typhimurium LT2-induced infection in the gnotobiotic piglet model. The DPM mixture successfully colonized the piglet gut and was stable and safe until the end of the experiment. The colon was inhabited by about 9 log CFU g-1 with a significant representation of bifidobacteria and lactobacilli compared to ileal levels around 7-8 log CFU g-1. Spore-forming clostridia and bacilli seemed to inhabit the environment only temporarily. The bacterial consortium contributed to the colonization of the gut at an entire length. The amplicon profile analysis supported the cultivation trend with a considerable representation of lactobacilli with bacilli in the ileum and bifidobacteria with clostridia in the colon. Although there was no significant Salmonella-positive elimination, it seems that the administered bacteria conferred the protection of infected piglets because of the slowed delayed infection manifestation without translocations of Salmonella cells to the blood circulation. Due to its colonization stability and potential protective anti-Salmonella traits, the DPM mixture has promising potential in pig production applications. However, advanced immunological tests are needed.
- Klíčová slova
- Salmonella typhimurium, bacilli, bacterial consortium, bifidobacteria, clostridia, lactobacilli,
- Publikační typ
- časopisecké články MeSH
Since microbiota may influence the physiology of its host including body weight increase, growth rate or feed intake, in this study we determined the microbiota composition in high or low residual feed intake (HRFI and LRFI) pig lines, of different age and/or subjected to sanitary stress by sequencing the V3/V4 variable region of 16S rRNA genes. Allisonella, Megasphaera, Mitsuokella, Acidaminococcus (all belonging to Firmicutes/class Negativicutes), Lactobacillus, Faecalibacterium, Catenibacterium, Butyrivibrio, Erysipelotrichaceae, Holdemania, Olsenella and Collinsella were more abundant in HRFI pigs. On the other hand, 26 genera including Bacteroides, Clostridium sensu stricto, Oscillibacter, Paludibacter, Elusimicrobium, Bilophila, Pyramidobacter and TM7 genera, and Clostridium XI and Clostridium XIVa clusters were more abundant in LRFI than HRFI pigs. Adaptation of microbiota to new diet after weaning was slower in LRFI than in HRFI pigs. Sanitary stress was of relatively minor influence on pig microbiota composition in both tested lines although abundance of Helicobacter increased in LRFI pigs subjected to stress. Selection for residual feed intake thus resulted in a selection of fecal microbiota of different composition. However, we cannot conclude whether residual feed intake was directly affected by different microbiota composition or whether the residual feed intake and microbiota composition are two independent consequences of yet unknown genetic traits differentially selected in the pigs of the two lines.
- MeSH
- bakteriální RNA MeSH
- dieta * MeSH
- druhová specificita * MeSH
- feces mikrobiologie MeSH
- fyziologický stres fyziologie MeSH
- odstavení MeSH
- přijímání potravy MeSH
- RNA ribozomální 16S MeSH
- střevní mikroflóra genetika fyziologie MeSH
- Sus scrofa MeSH
- věkové faktory MeSH
- životní prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH
Effects of vertebrate-associated microbiota on physiology and health are of significant interest in current biological research. Most previous studies have focused on host-microbiota interactions in captive-bred mammalian models. These interactions and their outcomes are still relatively understudied, however, in wild populations and non-mammalian taxa. Using deep pyrosequencing, we described the cloacal microbiome (CM) composition in free living barn swallows Hirundo rustica, a long-distance migratory passerine bird. Barn swallow CM was dominated by bacteria of the Actinobacteria, Proteobacteria and Firmicutes phyla. Bacteroidetes, which represent an important proportion of the digestive tract microbiome in many vertebrate species, was relatively rare in barn swallow CM (< 5%). CM composition did not differ between males and females. A significant correlation of CM within breeding pair members is consistent with the hypothesis that cloacal contact during within-pair copulation may promote transfer of bacterial assemblages. This effect on CM composition had a relatively low effect size, however, possibly due to the species' high level of sexual promiscuity.
- MeSH
- bakteriální RNA MeSH
- biodiverzita MeSH
- chov MeSH
- kloaka mikrobiologie MeSH
- metagenom MeSH
- migrace zvířat * MeSH
- mikrobiota * MeSH
- ptáci mikrobiologie MeSH
- RNA ribozomální 16S genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- RNA ribozomální 16S MeSH