Nejvíce citovaný článek - PubMed ID 16075058
The purpose of the study was to investigate the expression of ferroportin protein following treatments that affect systemic hepcidin. Administration of erythropoietin to C57BL/6J mice decreased systemic hepcidin expression; it also increased heart ferroportin protein content, determined by immunoblot in the membrane fraction, to approximately 200% of control values. This increase in heart ferroportin protein is very probably caused by a decrease in systemic hepcidin expression, in accordance with the classical regulation of ferroportin by hepcidin. However, the control of heart ferroportin protein by systemic hepcidin could apparently be overridden by changes in heart non-heme iron content since injection of ferric carboxymaltose to mice at 300 mg Fe/kg resulted in an increase in liver hepcidin expression, heart non-heme iron content, and also a threefold increase in heart ferroportin protein content. In a separate experiment, feeding an iron-deficient diet to young Wistar rats dramatically decreased liver hepcidin expression, while heart non-heme iron content and heart ferroportin protein content decreased to 50% of controls. It is, therefore, suggested that heart ferroportin protein is regulated primarily by the iron regulatory protein/iron-responsive element system and that the regulation of heart ferroportin by the hepcidin-ferroportin axis plays a secondary role.
- Klíčová slova
- ferroportin, hemojuvelin, hepcidin, iron metabolism, myocardium,
- MeSH
- hepcidiny * genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potkani Wistar MeSH
- proteiny přenášející kationty MeSH
- železo * metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Ferroportin MeSH
- hepcidiny * MeSH
- proteiny přenášející kationty MeSH
- železo * MeSH
Tmprss6-mutated mask mice display iron deficiency anemia and high expression of hepcidin. The aim of the study was to determine the effect of erythropoietin administration on proteins participating in the control of iron homeostasis in the liver and spleen in C57BL/6 and mask mice. Administration of erythropoietin for four days at 50 IU/mouse/day increased hemoglobin and hematocrit in C57BL/6 mice, no such increase was seen in mask mice. Erythropoietin administration decreased hepcidin expression in C57BL/6 mice, but not in mask mice. Erythropoietin treatment significantly increased the spleen size in both C57BL/6 and mask mice. Furthermore, erythropoietin administration increased splenic Fam132b, Fam132a and Tfr2 mRNA content. At the protein level, erythropoietin increased the amount of splenic erythroferrone and transferrin receptor 2 both in C57BL/6 and mask mice. Splenic ferroportin content was decreased in erythropoietin-treated mask mice in comparison with erythropoietin-treated C57BL/6 mice. In mask mice, the amount of liver hemojuvelin was decreased in comparison with C57BL/6 mice. The pattern of hemojuvelin cleavage was different between C57BL/6 and mask mice: In both groups, a main hemojuvelin band was detected at approximately 52 kDa; in C57BL/6 mice, a minor cleaved band was seen at 47 kDa. In mask mice, the 47 kDa band was absent, but additional minor bands were detected at approximately 45 kDa and 48 kDa. The results provide support for the interaction between TMPRSS6 and hemojuvelin in vivo; they also suggest that hemojuvelin could be cleaved by another as yet unknown protease in the absence of functional TMPRSS6. The lack of effect of erythropoietin on hepcidin expression in mask mice can not be explained by changes in erythroferrone synthesis, as splenic erythroferrone content increased after erythropoietin administration in both C57BL/6 and mask mice.
- MeSH
- cytokiny genetika metabolismus MeSH
- erythropoetin genetika farmakologie MeSH
- GPI-vázané proteiny MeSH
- hepcidiny genetika metabolismus MeSH
- játra metabolismus patologie MeSH
- membránové proteiny genetika metabolismus MeSH
- mutantní kmeny myší MeSH
- myši MeSH
- protein hemochromatózy MeSH
- proteiny vázající RNA genetika metabolismus MeSH
- regulace genové exprese účinky léků genetika MeSH
- serinové endopeptidasy genetika metabolismus MeSH
- slezina metabolismus patologie MeSH
- svalové proteiny genetika metabolismus MeSH
- velikost orgánu účinky léků genetika MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Ankrd17 protein, mouse MeSH Prohlížeč
- cytokiny MeSH
- Erfe protein, mouse MeSH Prohlížeč
- erythropoetin MeSH
- GPI-vázané proteiny MeSH
- Hamp protein, mouse MeSH Prohlížeč
- hepcidiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- matriptase 2 MeSH Prohlížeč
- membránové proteiny MeSH
- protein hemochromatózy MeSH
- proteiny vázající RNA MeSH
- serinové endopeptidasy MeSH
- svalové proteiny MeSH
- železo MeSH
Matriptase-2 (TMPRSS6) is an important negative regulator of hepcidin expression; however, the effects of iron overload or accelerated erythropoiesis on liver TMPRSS6 protein content in vivo are largely unknown. We determined TMPRSS6 protein content in plasma membrane-enriched fractions of liver homogenates by immunoblotting, using a commercial antibody raised against the catalytic domain of TMPRSS6. Plasma membrane-enriched fractions were obtained by centrifugation at 3000 g and washing. TMPRSS6 was detected in the 3000 g fraction as a 120 kDa full-length protein in both mice and rats. Feeding of iron-deficient diet as well as erythropoietin treatment increased TMPRSS6 protein content in rats and mice by a posttranscriptional mechanism; the increase in TMPRSS6 protein by erythropoietin was also observed in Bmp6-mutant mice. Administration of high doses of iron to mice (200, 350 and 700 mg/kg) decreased TMPRSS6 protein content. Hemojuvelin was detected in the plasma membrane-enriched fractions of control animals as a full length protein of approximately 52 kDa; in iron deficient animals, the full length protein was partially cleaved at the N-terminus, resulting in an additional weak band of approximately 47 kDa. In livers from hemojuvelin-mutant mice, TMPRSS6 protein content was strongly decreased, suggesting that intact hemojuvelin is necessary for stable TMPRSS6 expression in the membrane. Overall, the results demonstrate posttranscriptional regulation of liver TMPRSS6 protein by iron status and erythropoietin administration, and provide support for the interaction of TMPRSS6 and hemojuvelin proteins in vivo.
- MeSH
- anemie z nedostatku železa metabolismus MeSH
- deficit železa * MeSH
- erythropoetin metabolismus farmakologie MeSH
- GPI-vázané proteiny MeSH
- játra účinky léků metabolismus MeSH
- kostní morfogenetický protein 6 genetika MeSH
- krysa rodu Rattus MeSH
- membránové proteiny metabolismus MeSH
- modely nemocí na zvířatech MeSH
- mutace MeSH
- myši knockoutované MeSH
- myši MeSH
- přetížení železem metabolismus MeSH
- protein hemochromatózy MeSH
- serinové endopeptidasy metabolismus MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- erythropoetin MeSH
- GPI-vázané proteiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- kostní morfogenetický protein 6 MeSH
- matriptase 2 MeSH Prohlížeč
- membránové proteiny MeSH
- protein hemochromatózy MeSH
- serinové endopeptidasy MeSH
- sodíko-draslíková ATPasa MeSH
- železo MeSH
INTRODUCTION: Hemojuvelin (Hjv) is a key component of the signaling cascade that regulates liver hepcidin (Hamp) expression. The purpose of this study was to determine Hjv protein levels in mice and rats subjected to iron overload and iron deficiency. METHODS: C57BL/6 mice were injected with iron (200 mg/kg); iron deficiency was induced by feeding of an iron-deficient diet, or by repeated phlebotomies. Erythropoietin (EPO)-treated mice were administered recombinant EPO at 50 U/mouse. Wistar rats were injected with iron (1200 mg/kg), or fed an iron-deficient diet. Hjv protein was determined by immunoblotting, liver samples from Hjv-/- mice were used as negative controls. Mouse plasma Hjv content was determined by a commercial ELISA kit. RESULTS: Liver crude membrane fraction from both mice and rats displayed a major Hjv-specific band at 35 kDa, and a weaker band of 20 kDa. In mice, the intensity of these bands was not changed following iron injection, repeated bleeding, low iron diet or EPO administration. No change in liver crude membrane Hjv protein was observed in iron-treated or iron-deficient rats. ELISA assay for mouse plasma Hjv did not show significant difference between Hjv+/+ and Hjv-/- mice. Liver Hamp mRNA, Bmp6 mRNA and Id1 mRNA displayed the expected response to iron overload and iron deficiency. EPO treatment decreased Id1 mRNA, suggesting possible participation of the bone morphogenetic protein pathway in EPO-mediated downregulation of Hamp mRNA. DISCUSSION: Since no differences between Hjv protein levels were found following various experimental manipulations of body iron status, the results indicate that, in vivo, substantial changes in Hamp mRNA can occur without noticeable changes of membrane hemojuvelin content. Therefore, modulation of hemojuvelin protein content apparently does not represent the limiting step in the control of Hamp gene expression.
- MeSH
- deficit železa MeSH
- dietní železo metabolismus MeSH
- erythropoetin farmakologie MeSH
- GPI-vázané proteiny MeSH
- játra účinky léků metabolismus MeSH
- kostní morfogenetické proteiny genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- membránové proteiny genetika metabolismus MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- potkani Wistar MeSH
- přetížení železem genetika metabolismus MeSH
- protein hemochromatózy MeSH
- signální transdukce účinky léků genetika MeSH
- železo metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- dietní železo MeSH
- erythropoetin MeSH
- GPI-vázané proteiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- kostní morfogenetické proteiny MeSH
- membránové proteiny MeSH
- protein hemochromatózy MeSH
- železo MeSH
BACKGROUND: Hemojuvelin (HJV) is one of essential components for expression of hepcidin, a hormone which regulates iron transport. HJV is mainly expressed in muscle and liver, and processing of HJV in both tissues is similar. However, hepcidin is expressed in liver but not in muscle and the role of the muscle HJV is yet to be established. Our preliminary analyses of mouse tissue HJV showed that the apparent molecular masses of HJV peptides are different in liver (50 kDa monomer and 35 and 20 kDa heterodimer fragments) and in muscle (55 kDa monomer and a 34 kDa possible large fragment of heterodimer). One possible explanation is glycosylation which could lead to difference in molecular mass. RESULTS: We investigated glycosylation of HJV in both liver and muscle tissue from mice. PNGase F treatment revealed that the HJV large fragments of liver and muscle were digested to peptides with similar masses, 30 and 31 kDa, respectively, and the liver 20 kDa small fragment of heterodimer was digested to 16 kDa, while the 50 kDa liver and 55 kDa muscle monomers were reduced to 42 and 48 kDa, respectively. Endo H treatment produced distinct digestion profiles of the large fragment: a small fraction of the 35 kDa peptide was reduced to 33 kDa in liver, while the majority of the 34 kDa peptide was digested to 33 kDa and a very small fraction to 31 kDa in muscle. In addition, liver HJV was found to be neuraminidase-sensitive but its muscle counterpart was neuraminidase-resistant. CONCLUSIONS: Our results indicate that different oligosaccharides are attached to liver and muscle HJV peptides, which may contribute to different functions of HJV in the two tissues.
- MeSH
- extracelulární prostor metabolismus MeSH
- genový knockout MeSH
- glykopeptidasa metabolismus MeSH
- glykosylace MeSH
- GPI-vázané proteiny MeSH
- játra cytologie metabolismus MeSH
- membránové proteiny nedostatek genetika izolace a purifikace metabolismus MeSH
- myši MeSH
- neuraminidasa metabolismus MeSH
- orgánová specificita MeSH
- protein hemochromatózy MeSH
- svaly cytologie metabolismus MeSH
- transport proteinů MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- glykopeptidasa MeSH
- GPI-vázané proteiny MeSH
- HJV protein, mouse MeSH Prohlížeč
- membránové proteiny MeSH
- neuraminidasa MeSH
- protein hemochromatózy MeSH