Nejvíce citovaný článek - PubMed ID 16455805
The pregnane X receptor (PXR) is a ligand-activated nuclear receptor controlling hepatocyte expression of numerous genes. Although expression changes in xenobiotic-metabolizing, lipogenic, gluconeogenic and bile acid synthetic genes have been described after PXR activation, the temporal dynamics of their expression is largely unknown. Recently, 3D spheroids of primary human hepatocytes (PHHs) have been characterized as the most phenotypically relevant hepatocyte model. We used 3D PHHs to assess time-dependent expression profiles of 12 prototypic PXR-controlled genes in the time course of 168 h of rifampicin treatment (1 or 10 µM). We observed a similar bell-shaped time-induction pattern for xenobiotic-handling genes (CYP3A4, CYP2C9, CYP2B6, and MDR1). However, we observed either biphasic profiles for genes involved in endogenous metabolism (FASN, GLUT2, G6PC, PCK1, and CYP7A1), a decrease for SHP or oscillation for PDK4 and PXR. The rifampicin concentration determined the expression profiles for some genes. Moreover, we calculated half-lives of CYP3A4 and CYP2C9 mRNA under induced or basal conditions and we used a mathematical model to describe PXR-mediated regulation of CYP3A4 expression employing 3D PHHs. The study shows the importance of long-term time-expression profiling of PXR target genes in phenotypically stable 3D PHHs and provides insight into PXR function in liver beyond our knowledge from conventional 2D in vitro models.
- Klíčová slova
- Gene expression dynamics, Mathematical modelling, Pregnane X receptor, Primary human hepatocytes, Rifampicin, Spheroids,
- MeSH
- cytochrom P-450 CYP3A metabolismus MeSH
- hepatocyty metabolismus MeSH
- lidé MeSH
- pregnanový X receptor genetika metabolismus MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- steroidní receptory * genetika metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- cytochrom P-450 CYP3A MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- steroidní receptory * MeSH
Pregnane X Receptor (PXR) is a ligand-activated transcription factor which binds many structurally different molecules. The receptor is able to regulate the expression of a wide array of genes and is involved in cancer and different key physiological processes such as the metabolism of drugs/xenobiotics and endogenous compounds including lipids and carbohydrates, and inflammation. Algae, sponges, sea squirts, and other marine organisms are some of the species from which structurally new molecules have been isolated that have been subsequently identified in recent decades as ligands for PXR. The therapeutic potential of these natural compounds is promising in different areas and has recently resulted in the registration of trabectedin by the FDA as a novel antineoplastic drug. Apart from being potentially novel drugs, these compounds can also serve as models for the development of new molecules with improved activity. The aim of this review is to succinctly summarize the currently known natural molecules isolated from marine organisms with a proven ability to interact with PXR.
- Klíčová slova
- CYP450, PXR, cancer, gene regulation, inflammation, marine origin, natural compound,
- MeSH
- biologické přípravky chemie izolace a purifikace farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- molekulární struktura MeSH
- Porifera chemie MeSH
- pregnanový X receptor metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- Urochordata chemie MeSH
- vodní organismy chemie MeSH
- vyvíjení léků * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- biologické přípravky MeSH
- ligandy MeSH
- pregnanový X receptor MeSH
The pregnane X receptor (PXR) is a drug/xenobiotic-activated transcription factor of crucial importance for major cytochrome P450 xenobiotic-metabolizing enzymes (CYP) expression and regulation in the liver and the intestine. One of the major target genes regulated by PXR is the cytochrome P450 enzyme (CYP3A4), which is the most important human drug-metabolizing enzyme. In addition, PXR is supposed to be involved both in basal and/or inducible expression of many other CYPs, such as CYP2B6, CYP2C8, 2C9 and 2C19, CYP3A5, CYP3A7, and CYP2A6. Interestingly, the dynamics of PXR-mediated target genes regulation has not been systematically studied and we have only a few mechanistic mathematical and biologically based models describing gene expression dynamics after PXR activation in cellular models. Furthermore, few indirect mathematical PKPD models for prediction of CYP3A metabolic activity in vivo have been built based on compartmental models with respect to drug⁻drug interactions or hormonal crosstalk. Importantly, several negative feedback loops have been described in PXR regulation. Although current mathematical models propose these adaptive mechanisms, a comprehensive mathematical model based on sufficient experimental data is still missing. In the current review, we summarize and compare these models and address some issues that should be considered for the improvement of PXR-mediated gene regulation modelling as well as for our better understanding of the quantitative and spatial dynamics of CYPs expression.
- Klíčová slova
- Pregnane X receptor, gene regulation, mathematical models, simulation,
- MeSH
- genové regulační sítě * MeSH
- lidé MeSH
- pregnanový X receptor MeSH
- steroidní receptory genetika metabolismus MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- teoretické modely * MeSH
- zpětná vazba fyziologická MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- pregnanový X receptor MeSH
- steroidní receptory MeSH
- systém (enzymů) cytochromů P-450 MeSH
Pregnane X receptor is a ligand-activated nuclear receptor (NR) that mainly controls inducible expression of xenobiotics handling genes including biotransformation enzymes and drug transporters. Nowadays it is clear that PXR is also involved in regulation of intermediate metabolism through trans-activation and trans-repression of genes controlling glucose, lipid, cholesterol, bile acid, and bilirubin homeostasis. In these processes PXR cross-talks with other NRs. Accumulating evidence suggests that the cross-talk is often mediated by competing for common coactivators or by disruption of coactivation and activity of other transcription factors by the ligand-activated PXR. In this respect mainly PXR-CAR and PXR-HNF4α interference have been reported and several cytochrome P450 enzymes (such as CYP7A1 and CYP8B1), phase II enzymes (SULT1E1, Gsta2, Ugt1a1), drug and endobiotic transporters (OCT1, Mrp2, Mrp3, Oatp1a, and Oatp4) as well as intermediate metabolism enzymes (PEPCK1 and G6Pase) have been shown as down-regulated genes after PXR activation. In this review, I summarize our current knowledge of PXR-mediated repression and coactivation interference in PXR-controlled gene expression regulation.
- Klíčová slova
- PXR, cross-talk, gene regulation, metabolism, nuclear receptor,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The small/short heterodimer partner (SHP, NR0B2) is a nuclear receptor corepressor lacking a DNA binding domain. SHP is induced by bile acid-activated farnesoid X receptor (FXR) resulting in CYP7A1 gene suppression. In contrast, Pregnane X receptor (PXR) activation by its ligands was recently suggested to inhibit SHP gene transactivation to maximize the induction of PXR target genes. However, there are also conflicting reports in literature whether PXR or rodent Pxr activation down-regulates SHP/Shp expression. Moreover, the PXR-mediated regulation of the SHP gene has been studied only at the SHP mRNA and transactivation (gene reporter assay) levels. In this study, we studied the effect of rifampicin, a prototype PXR ligand, on SHP mRNA, and protein expression in three primary human hepatocyte cultures. We found that SHP mRNA is not systematically down-regulated in hepatocyte in culture after 24 h treatment with rifampicin. Consistently, we did not observe down-regulation of SHP protein in primary human hepatocytes after 24 and 48 h of incubation with rifampicin. We can conclude that although we observed slight down-regulation of SHP mRNA and protein in several hepatocyte preparations, the phenomenon is unlikely critical for PXR-mediated induction of its target genes.
- Klíčová slova
- CYP3A4, PXR, SHP, cytochrome P450, induction,
- Publikační typ
- časopisecké články MeSH