Nejvíce citovaný článek - PubMed ID 16648462
Dynamic changes in maternal‒zygotic transition (MZT) require complex regulation of zygote formation, maternal transcript decay, embryonic genome activation (EGA), and cell cycle progression. Although these changes are well described, some key regulatory factors are still elusive. Sirtuin-1 (SIRT1), an NAD+-dependent histone deacetylase, is a versatile driver of MZT via its epigenetic and nonepigenetic substrates. This study focused on the dynamics of SIRT1 in early embryos and its contribution to MZT. A conditional SIRT1-deficient knockout mouse model was used, accompanied by porcine and human embryos. Embryos across mammalian species showed the prominent localization of SIRT1 in the nucleus throughout early embryonic development. Accordingly, SIRT1 interacts with histone H4 on lysine K16 (H4K16) in both mouse and human blastocysts. While maternal SIRT1 is dispensable for MZT, at least one allele of embryonic Sirt1 is required for early embryonic development around the time of EGA. This role of SIRT1 is surprisingly mediated via a transcription-independent mode of action.
- Klíčová slova
- Embryo, Embryonic genome activation, Epigenetics, Histone deacetylase, Oocyte, zygote,
- MeSH
- blastocysta metabolismus MeSH
- embryo savčí metabolismus MeSH
- embryonální vývoj * genetika MeSH
- histony metabolismus MeSH
- lidé MeSH
- myši knockoutované * MeSH
- myši MeSH
- prasata MeSH
- sirtuin 1 * metabolismus genetika MeSH
- vývojová regulace genové exprese MeSH
- zvířata MeSH
- zygota * metabolismus MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- histony MeSH
- SIRT1 protein, human MeSH Prohlížeč
- Sirt1 protein, mouse MeSH Prohlížeč
- sirtuin 1 * MeSH
BACKGROUND: SIRT1 histone deacetylase acts on many epigenetic and non-epigenetic targets. It is thought that SIRT1 is involved in oocyte maturation; therefore, the importance of the ooplasmic SIRT1 pool for the further fate of mature oocytes has been strongly suggested. We hypothesised that SIRT1 plays the role of a signalling molecule in mature oocytes through selected epigenetic and non-epigenetic regulation. RESULTS: We observed SIRT1 re-localisation in mature oocytes and its association with spindle microtubules. In mature oocytes, SIRT1 distribution shows a spindle-like pattern, and spindle-specific SIRT1 action decreases α-tubulin acetylation. Based on the observation of the histone code in immature and mature oocytes, we suggest that SIRT1 is mostly predestined for an epigenetic mode of action in the germinal vesicles (GVs) of immature oocytes. Accordingly, BML-278-driven trimethylation of lysine K9 in histone H3 in mature oocytes is considered to be a result of GV epigenetic transformation. CONCLUSIONS: Taken together, our observations point out the dual spatiotemporal SIRT1 action in oocytes, which can be readily switched from the epigenetic to non-epigenetic mode of action depending on the progress of meiosis.
- Klíčová slova
- Epigenetics, Histone code, In vitro maturation, Oocyte, SIRT1, Sirtuin 1,
- Publikační typ
- časopisecké články MeSH