Most cited article - PubMed ID 16794538
Production of nitric oxide during graft rejection is regulated by the Th1/Th2 balance, the arginase activity, and L-arginine metabolism
In spite of intensive research, the molecular basis of allograft and xenograft rejection still remains not fully understood. The acute rejection of an allograft is associated with the intragraft Th1 cytokine response, while tolerance of an allograft or xenograft rejection is accompanied by a higher production of the Th2 cytokines interleukin (IL)-4 and IL-10. Nevertheless, these cytokines are not the final regulatory and effector molecules mediating transplantation reactions. Data indicate that the functioning of common molecules with enzymatic activities, such are inducible nitric oxide synthase (iNOS), arginase, heme oxygenase-1 (HO-1) or indoleamine-2,3-dioxygenase (IDO), the bioavailability of their substrates (L-arginine, tryptophan, heme) and the cytotoxic and regulatory actions of their small gaseous products (NO, CO) can be the ultimate mechanisms responsible for effector or regulatory reactions. Using models of transplantation immunity and tolerance we show that T cell receptor-mediated recognition of allogeneic or xenogeneic antigens as well as the balance between immunity/tolerance induces distinct cytokine production profiles. The ratio between Th1 and Th2 cytokines efficiently regulates the expression of genes for common enzymes, such as iNOS, arginase, HO-1 and IDO. These enzymes may compete for substrates, such as L-arginine or tryptophan, and the final product of their activity are small molecules (NO, CO) displaying effector or regulatory functions of the immune system. Thus, it is suggested that in spite of the high immunological specificity of transplatation reaction, the ultimate players in regulatory and effector functions could be small and common molecules.
- Keywords
- Arginase, Graft rejection, Immunoregulation, Macrophages, Nitric oxide, Th1/Th2 balance, Tolerance,
- Publication type
- Journal Article MeSH
The development and function of CD4(+) CD25(+) Foxp3(+) regulatory T cells (Tregs) are strictly regulated by cytokines. Here we show that transforming growth factor-beta (TGF-beta) and interleukin-4 (IL-4) play a crucial and antagonistic role in the development of Tregs. Additionally, these cytokines also have distinct effects on the maintenance of natural (nTregs) and antigen-induced (iTregs) Tregs. Using double-staining and tracking of proliferation of purified and carboxyflourescein succinimidyl ester (CFSE)-labelled mouse T-cell subpopulations we demonstrated that CD4(+) CD25(+) Foxp3(+) iTregs develop upon alloantigenic stimulation in the presence of TGF-beta exclusively from CD4(+) CD25(-) Foxp3(-) precursors. Both the induction of Foxp3 expression and Treg proliferation were prevented when the cells were stimulated in the presence of IL-4. By contrast, nTregs did not proliferate in the presence of the antigen and TGF-beta, and partially lost their Foxp3 expression. IL-4 not only prevented the development of iTregs, but also down-regulated the level of Foxp3 mRNA and decreased the number of Foxp3(+) cells in a population of iTregs. Further analyses proved that IL-4 decreased the expression of Foxp3 only in a population of iTregs, whereas it substantially supported the survival of nTregs. Functional experiments showed that Tregs induced in the presence of alloantigen and TGF-beta inhibited, on a per-cell basis, cell proliferation comparably to nTregs, and their suppressive capacity was not modulated by IL-4. These data suggest that TGF-beta and IL-4 differentially regulate the development of Tregs and distinctly sustain Foxp3 expression and the number of nTregs and iTregs, but have no influence on the suppressive activity of Tregs on a per-cell basis.
- MeSH
- Cell Differentiation drug effects immunology MeSH
- CD4-Positive T-Lymphocytes drug effects immunology metabolism MeSH
- Forkhead Transcription Factors antagonists & inhibitors biosynthesis MeSH
- Interleukin-4 pharmacology physiology MeSH
- RNA, Messenger immunology metabolism MeSH
- Mice, Inbred BALB C MeSH
- Mice, Inbred C57BL MeSH
- Mice MeSH
- T-Lymphocytes, Regulatory drug effects immunology MeSH
- T-Lymphocyte Subsets drug effects immunology metabolism MeSH
- Transforming Growth Factor beta pharmacology physiology MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Forkhead Transcription Factors MeSH
- Foxp3 protein, mouse MeSH Browser
- Interleukin-4 MeSH
- RNA, Messenger MeSH
- Transforming Growth Factor beta MeSH