Nejvíce citovaný článek - PubMed ID 17298047
Antiviral activity of triazine analogues of 1-(S)-[3-hydroxy-2-(phosphonomethoxy)propyl]cytosine (cidofovir) and related compounds
Compounds with a phosphonate group, i.e., -P(O)(OH)2 group attached directly to the molecule via a P-C bond serve as suitable non-hydrolyzable phosphate mimics in various biomedical applications. In principle, they often inhibit enzymes utilizing various phosphates as substrates. In this review we focus mainly on biologically active phosphonates that originated from our institute (Institute of Organic Chemistry and Biochemistry in Prague); i.e., acyclic nucleoside phosphonates (ANPs, e.g., adefovir, tenofovir, and cidofovir) and derivatives of non-nucleoside phosphonates such as 2-(phosphonomethyl) pentanedioic acid (2-PMPA). Principal strategies of their syntheses and modifications to prodrugs is reported. Besides clinically used ANP antivirals, a special attention is paid to new biologically active molecules with respect to emerging infections and arising resistance of many pathogens against standard treatments. These new structures include 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidines or so-called "open-ring" derivatives, acyclic nucleoside phosphonates with 5-azacytosine as a base moiety, side-chain fluorinated ANPs, aza/deazapurine ANPs. When transformed into an appropriate prodrug by derivatizing their charged functionalities, all these compounds show promising potential to become drug candidates for the treatment of viral infections. ANP prodrugs with suitable pharmacokinetics include amino acid phosphoramidates, pivaloyloxymethyl (POM) and isopropoxycarbonyloxymethyl (POC) esters, alkyl and alkoxyalkyl esters, salicylic esters, (methyl-2-oxo-1,3-dioxol-4-yl) methyl (ODOL) esters and peptidomimetic prodrugs. We also focus on the story of cytostatics related to 9-[2-(phosphonomethoxy)ethyl]guanine and its prodrugs which eventually led to development of the veterinary drug rabacfosadine. Various new ANP structures are also currently investigated as antiparasitics, especially antimalarial agents e.g., guanine and hypoxanthine derivatives with 2-(phosphonoethoxy)ethyl moiety, their thia-analogues and N-branched derivatives. In addition to ANPs and their analogs, we also describe prodrugs of 2-(phosphonomethyl)pentanedioic acid (2-PMPA), a potent inhibitor of the enzyme glutamate carboxypeptidase II (GCPII), also known as prostate-specific membrane antigen (PSMA). Glutamate carboxypeptidase II inhibitors, including 2-PMPA have been found efficacious in various preclinical models of neurological disorders which are caused by glutamatergic excitotoxicity. Unfortunately its highly polar character and hence low bioavailability severely limits its potential for clinical use. To overcome this problem, various prodrug strategies have been used to mask carboxylates and/or phosphonate functionalities with pivaloyloxymethyl, POC, ODOL and alkyl esters. Chemistry and biological characterization led to identification of prodrugs with 44-80 fold greater oral bioavailability (tetra-ODOL-2-PMPA).
- Klíčová slova
- 2-PMPA, FOLH1, GCPII, acyclic nucleoside phosphonates, antivirals, prodrugs, prostate-specific membrane antigen, protides,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Polyomavirus infections occur commonly in humans and are normally nonfatal. However, in immunocompromised individuals, they are intractable and frequently fatal. Due to a lack of approved drugs to treat polyomavirus infections, cidofovir, a phosphonate nucleotide analog approved to treat cytomegalovirus infections, has been repurposed as an antipolyomavirus agent. Cidofovir has been modified in various ways to improve its efficacies as a broad-spectrum antiviral agent. However, the actual mechanisms and targets of cidofovir and its modified derivatives as antipolyomavirus agents are still under research. Here, polyomavirus large tumor antigen (Tag) activities were identified as the viral target of cidofovir derivatives. The alkoxyalkyl ester derivatives of cidofovir efficiently inhibit polyomavirus DNA replication in cell-free human extracts and a viral in vitro replication system utilizing only purified proteins. We present evidence that DNA helicase and DNA binding activities of polyomavirus Tags are diminished in the presence of low concentrations of alkoxyalkyl ester derivatives of cidofovir, suggesting that the inhibition of viral DNA replication is at least in part mediated by inhibiting single-stranded DNA (ssDNA) and double-stranded DNA (dsDNA) binding activities of Tags. These findings show that the alkoxyalkyl ester derivatives of cidofovir are effective in vitro without undergoing further conversions, and we conclude that the inhibitory mechanisms of nucleotide analog-based drugs are more complex than previously believed.
- Klíčová slova
- ATPase, DNA helicase, DNA replication, large T antigen, nucleoside analogs, polyomavirus, protein-DNA interactions,
- MeSH
- antigeny virové nádorové * MeSH
- cytosin MeSH
- DNA virů genetika MeSH
- estery farmakologie MeSH
- lidé MeSH
- nukleotidy MeSH
- Polyomavirus * genetika MeSH
- replikace DNA MeSH
- replikace viru MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antigeny virové nádorové * MeSH
- cytosin MeSH
- DNA virů MeSH
- estery MeSH
- nukleotidy MeSH
With respect to the strong antiviral activity of (S)-1-[3-hydroxy-2-(phosphonomethoxy)propyl]-5-azacytosine various types of its side chain fluorinated analogues were prepared. The title compound, (S)-1-[3-fluoro-2-(phosphonomethoxy)propyl]-5-azacytosine (FPMP-5-azaC) was synthesised by the condensation reaction of (S)-2-[(diisopropoxyphosphoryl)methoxy)-3-fluoropropyl p-toluenesulfonate with a sodium salt of 5-azacytosine followed by separation of appropriate N 1 and O 2 regioisomers and ester hydrolysis. Transformations of FPMP-5-azaC to its 5,6-dihydro-5-azacytosine counterpart, amino acid phosphoramidate prodrugs and systems with an annelated five-membered imidazole ring, i.e. imidazo [1,2-a][1,3,5]triazine derivatives were also carried out. 1-(2-Phosphonomethoxy-3,3,3-trifluoropropyl)-5-azacytosine was prepared from 5-azacytosine and trifluoromethyloxirane to form 1-(3,3,3-trifluoro-2-hydroxypropyl)-5-azacytosine which was treated with diisopropyl bromomethanephosphonate followed by deprotection of esters. Antiviral activity of all newly prepared compounds was studied. FPMP-5-azaC diisopropyl ester inhibited the replication of herpes viruses with EC50 values that were about three times higher than that of the reference anti-HCMV drug ganciclovir without displaying cytotoxicity.
- Klíčová slova
- 5-Azacytosine, Acyclic nucleoside phosphonates, Fluorinated nucleotides, Phosphonates, Prodrugs,
- Publikační typ
- časopisecké články MeSH
New 2,4-diamino-6-[2-(phosphonomethoxy)ethoxy]pyrimidine (PMEO-DAPy) and 1-[2-(phosphonomethoxy)ethyl]-5-azacytosine (PME-5-azaC) prodrugs were prepared with a pro-moiety consisting of carbonyloxymethyl esters (POM, POC), alkoxyalkyl esters, amino acid phosphoramidates and/or tyrosine. The activity of the prodrugs was evaluated in vitro against different virus families. None of the synthesized prodrugs demonstrated activity against RNA viruses but some of them proved active against herpesviruses [including herpes simplex virus (HSV), varicella-zoster virus (VZV), and human cytomegalovirus (HCMV)]. The bis(POC) and the bis(amino acid) phosphoramidate prodrugs of PMEO-DAPy inhibited herpesvirus replication at lower doses than the parent compound although the selectivity against HSV and VZV was only slightly improved compared to PMEO-DAPy. The mono-octadecyl ester of PME-5-azaC emerged as the most potent and selective PME-5-azaC prodrug against HSV, VZV and HCMV with EC50's of 0.15-1.12µM while PME-5-azaC only had marginal anti-herpesvirus activity. Although the bis(hexadecylamido-l-tyrosyl) and the bis(POM) esters of PME-5-azaC were also very potent anti-herpesvirus drugs, these were less selective than the mono-octadecyl ester prodrug.
- Klíčová slova
- 5-Azacytosine, Acyclic nucleoside phosphonates, Antivirals, HPMP-5-azaC, Open-ring, PME-azaC, PMEO-DAPy, Phosphonate, Prodrug,
- MeSH
- antivirové látky chemická syntéza chemie farmakologie MeSH
- buněčné linie MeSH
- Cytomegalovirus účinky léků MeSH
- lidé MeSH
- organofosfonáty chemická syntéza chemie farmakologie MeSH
- prekurzory léčiv chemická syntéza chemie farmakologie MeSH
- pyrimidinové nukleosidy chemie MeSH
- Simplexvirus účinky léků MeSH
- virus varicella zoster účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- antivirové látky MeSH
- organofosfonáty MeSH
- prekurzory léčiv MeSH
- pyrimidinové nukleosidy MeSH