Nejvíce citovaný článek - PubMed ID 17600037
The study examines spatial patterns of effects of high temperature extremes on cardiovascular mortality in the Czech Republic at a district level during 1994-2009. Daily baseline mortality for each district was determined using a single location-stratified generalized additive model. Mean relative deviations of mortality from the baseline were calculated on days exceeding the 90th percentile of mean daily temperature in summer, and they were correlated with selected demographic, socioeconomic, and physical-environmental variables for the districts. Groups of districts with similar characteristics were identified according to socioeconomic status and urbanization level in order to provide a more general picture than possible on the district level. We evaluated lagged patterns of excess mortality after hot spell occurrences in: (i) urban areas vs. predominantly rural areas; and (ii) regions with different overall socioeconomic level. Our findings suggest that climatic conditions, altitude, and urbanization generally affect the spatial distribution of districts with the highest excess cardiovascular mortality, while socioeconomic status did not show a significant effect in the analysis across the Czech Republic as a whole. Only within deprived populations, socioeconomic status played a relevant role as well. After taking into account lagged effects of temperature on excess mortality, we found that the effect of hot spells was significant in highly urbanized regions, while most excess deaths in rural districts may be attributed to harvesting effects.
- Klíčová slova
- cardiovascular disease, heat stress, mortality, socioeconomic status, spatial differences,
- MeSH
- demografie MeSH
- dospělí MeSH
- kardiovaskulární nemoci epidemiologie mortalita MeSH
- lidé středního věku MeSH
- lidé MeSH
- městské obyvatelstvo statistika a číselné údaje MeSH
- poruchy vyvolané tepelným stresem epidemiologie mortalita MeSH
- roční období MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- socioekonomické faktory MeSH
- venkovské obyvatelstvo statistika a číselné údaje MeSH
- vysoká teplota škodlivé účinky MeSH
- zeměpis MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
Several studies have examined the relationship of high and low air temperatures to cardiovascular mortality in the Czech Republic. Much less is understood about heat-/cold-related cardiovascular morbidity and possible regional differences. This paper compares the effects of warm and cold days on excess mortality and morbidity for cardiovascular diseases (CVDs) in the city of Prague and a rural region of southern Bohemia during 1994-2009. Population size and age structure are similar in the two regions. The results are evaluated for selected population groups (men and women). Excess mortality (number of deaths) and morbidity (number of hospital admissions) were determined as differences between observed and expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Generally higher relative excess CVD mortality on warm days than on cold days was identified in both regions. In contrast to mortality, weak excess CVD morbidity was observed for both warm and cold days. Different responses of individual CVDs to heat versus cold stress may be caused by the different nature of each CVD and different physiological processes induced by heat or cold stress. The slight differences between Prague and southern Bohemia in response to heat versus cold stress suggest the possible influence of environmental and socioeconomic factors such as the effects of urban heat island and exposure to air pollution, lifestyle differences, and divergence in population structure, which may result in differing vulnerability of urban versus rural population to temperature extremes.
- MeSH
- dospělí MeSH
- hospitalizace statistika a číselné údaje MeSH
- kardiovaskulární nemoci epidemiologie mortalita MeSH
- lidé MeSH
- městské obyvatelstvo statistika a číselné údaje MeSH
- morbidita MeSH
- nízká teplota MeSH
- venkovské obyvatelstvo statistika a číselné údaje MeSH
- vysoká teplota MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH
We compare the recently developed Universal Thermal Climate Index (UTCI) with other thermal indices in analysing heat- and cold-related effects on cardiovascular (CVD) mortality in two different (urban and rural) regions in the Czech Republic during the 16-year period from 1994-2009. Excess mortality is represented by the number of deaths above expected daily values, the latter being adjusted for long-term changes, annual and weekly cycles, and epidemics of influenza/acute respiratory infections. Air temperature, UTCI, Apparent Temperature (AT) and Physiologically Equivalent Temperature (PET) are applied to identify days with heat and cold stress. We found similar heat effects on CVD mortality for air temperature and the examined thermal indices. Responses of CVD mortality to cold effects as characterised by different indices were much more varied. Particularly important is the finding that air temperature provides a weak cold effect in comparison with the thermal indices in both regions, so its application--still widespread in epidemiological studies--may underestimate the magnitude of cold-related mortality. These findings are important when possible climate change effects on heat- and cold-related mortality are estimated. AT and PET appear to be more universal predictors of heat- and cold- related mortality than UTCI when both urban and rural environments are of concern. UTCI tends to select windy rather than freezing days in winter, though these show little effect on mortality in the urban population. By contrast, significant cold-related mortality in the rural region if UTCI is used shows potential for UTCI to become a useful tool in cold exposure assessments.
- MeSH
- kardiovaskulární nemoci etiologie mortalita MeSH
- lidé MeSH
- lineární modely MeSH
- nízká teplota škodlivé účinky MeSH
- vysoká teplota škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Geografické názvy
- Česká republika epidemiologie MeSH