Most cited article - PubMed ID 19147403
Tick saliva affects both proliferation and distribution of Borrelia burgdorferi spirochetes in mouse organs and increases transmission of spirochetes to ticks
Experimental infections with different pathogen strains give insight into pathogen life history traits. The purpose of the present study was to compare variation in tissue infection prevalence and spirochete abundance among strains of Borrelia burgdorferi in a rodent host (Mus musculus, C3H/HeJ). Male and female mice were experimentally infected via tick bite with one of 12 strains. Ear tissue biopsies were taken at days 29, 59 and 89 postinfection, and seven tissues were collected at necropsy. The presence and abundance of spirochetes in the mouse tissues were measured by quantitative polymerase chain reaction. To determine the frequencies of our strains in nature, their multilocus sequence types were matched to published data sets. For the infected mice, 56.6% of the tissues were infected with B. burgdorferi. The mean spirochete load in the mouse necropsy tissues varied 4.8-fold between the strains. The mean spirochete load in the ear tissue biopsies decreased rapidly over time for some strains. The percentage of infected tissues in male mice (65.4%) was significantly higher compared to female mice (50.5%). The mean spirochete load in the seven tissues was 1.5× higher in male mice compared to female mice; this male bias was 15.3× higher in the ventral skin. Across the 11 strains, the mean spirochete loads in the infected mouse tissues were positively correlated with the strain-specific frequencies in their tick vector populations. The study suggests that laboratory-based estimates of pathogen abundance in host tissues can predict the strain composition of this important tick-borne pathogen in nature.
- Keywords
- Borrelia burgdorferi, Lyme borreliosis, pathogen abundance, pathogen life history, tick-borne disease,
- MeSH
- Borrelia burgdorferi Group * MeSH
- Borrelia burgdorferi * genetics MeSH
- Rodentia MeSH
- Ticks * MeSH
- Ixodes * MeSH
- Lyme Disease * epidemiology veterinary MeSH
- Mice, Inbred C3H MeSH
- Mice MeSH
- Prevalence MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
The hard tick Ixodes ricinus is an important disease vector whose salivary secretions mediate blood-feeding success on vertebrate hosts, including humans. Here we describe the expression profiles and downstream analysis of de novo-discovered microRNAs (miRNAs) expressed in I. ricinus salivary glands and saliva. Eleven tick-derived libraries were sequenced to produce 67,375,557 Illumina reads. De novo prediction yielded 67 bona fide miRNAs out of which 35 are currently not present in miRBase. We report for the first time the presence of microRNAs in tick saliva, obtaining furthermore molecular indicators that those might be of exosomal origin. Ten out of these microRNAs are at least 100 times more represented in saliva. For the four most expressed microRNAs from this subset, we analyzed their combinatorial effects upon their host transcriptome using a novel in silico target network approach. We show that only the inclusion of combinatorial effects reveals the functions in important pathways related to inflammation and pain sensing. A control set of highly abundant microRNAs in both saliva and salivary glands indicates no significant pathways and a far lower number of shared target genes. Therefore, the analysis of miRNAs from pure tick saliva strongly supports the hypothesis that tick saliva miRNAs can modulate vertebrate host homeostasis and represents the first direct evidence of tick miRNA-mediated regulation of vertebrate host gene expression at the tick-host interface. As such, the herein described miRNAs may support future drug discovery and development projects that will also experimentally question their predicted molecular targets in the vertebrate host.
- Keywords
- deep-sequencing, disease biology, gene target prediction, interactomes/systems biology, microRNA, tick–vertebrate host interaction,
- MeSH
- Gene Regulatory Networks * MeSH
- Tick Infestations genetics parasitology MeSH
- Host-Parasite Interactions genetics MeSH
- Ixodes genetics MeSH
- MicroRNAs analysis genetics MeSH
- Vertebrates parasitology MeSH
- Computer Simulation MeSH
- Salivary Glands metabolism MeSH
- Saliva chemistry metabolism MeSH
- Transcriptome * MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- MicroRNAs MeSH
Having emerged during the early part of the Cretaceous period, ticks are an ancient group of hematophagous ectoparasites with significant veterinary and public health importance worldwide. The success of their life strategy can be attributed, in part, to saliva. As we enter into a scientific era where the collection of massive data sets and structures for biological application is possible, we suggest that understanding the molecular mechanisms that govern the life cycle of ticks is within grasp. With this in mind, we discuss what is currently known regarding the manipulation of Toll-like (TLR) and Nod-like (NLR) receptor signaling pathways by tick salivary proteins, and how these molecules impact pathogen transmission.
- Keywords
- Innate immune signaling, Nod-like receptors (NLR), Tick saliva, Tick-borne diseases, Toll-like receptors (TLR),
- Publication type
- Journal Article MeSH