Most cited article - PubMed ID 19239426
Sperm antibodies, intra-acrosomal sperm proteins, and cytokines in semen in men from infertile couples
Recent studies have shown that infertility affects estimated 15% of all couples. Male infertility is the primary or contributory cause in 60% of these cases. Consequently, the application of assisted reproduction is increasing. These methods could benefit from an extended evaluation of sperm quality. For this reason, we analyzed sperm proteins from 30 men with normal spermiograms and 30 men with asthenozoospermia. Ejaculates of both groups were tested by flow cytometry (FCM) and fluorescence with a set of well-characterized anti-human sperm Hs-monoclonal antibodies (MoAbs), which were generated in our laboratory. No statistically significant differences were found between normospermics and asthenospermics in the expression of the sperm surface protein clusterin, evaluated with Hs-3 MoAb, and semenogelin, evaluated with Hs-9 MoAb. However, FCM revealed quantitative differences in the acrosomal proteins between normozoospermic and asthenozoospermic men, namely, in glyceraldehyde-3-phosphate dehydrogenase, evaluated with Hs-8 MoAb, valosin-containing protein, evaluated with Hs-14 MoAb, and ATP synthase (cAMP-dependent protein kinase II, PRKAR2A), evaluated with MoAb Hs-36. Asthenozoospermic men displayed a highly reduced expression of intra-acrosomal proteins, with a likely decrease in sperm quality, and thus a negative impact on successful reproduction. Asthenozoospermia seems to be a complex disorder involving intra-acrosomal proteins.
- MeSH
- Asthenozoospermia immunology metabolism MeSH
- Fertilization in Vitro MeSH
- Sperm Injections, Intracytoplasmic MeSH
- Humans MeSH
- Antibodies, Monoclonal immunology MeSH
- Proteins metabolism MeSH
- Flow Cytometry MeSH
- Spermatozoa immunology metabolism MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Antibodies, Monoclonal MeSH
- Proteins MeSH
BACKGROUND: Sperm proteins are important for the sperm cell function in fertilization. Some of them are involved in the binding of sperm to the egg. We characterized the acrosomal sperm protein detected by a monoclonal antibody (MoAb) (Hs-8) that was prepared in our laboratory by immunization of BALB/c mice with human ejaculated sperms and we tested the possible role of this protein in the binding assay. METHODS: Indirect immunofluorescence and immunogold labelling, gel electrophoresis, Western blotting and protein sequencing were used for Hs-8 antigen characterization. Functional analysis of GAPDHS from the sperm acrosome was performed in the boar model using sperm/zona pellucida binding assay. RESULTS: Monoclonal antibody Hs-8 is an anti-human sperm antibody that cross-reacts with the Hs-8-related protein in spermatozoa of other mammalian species (boar, mouse). In the immunofluorescence test, Hs-8 antibody recognized the protein localized in the acrosomal part of the sperm head and in the principal piece of the sperm flagellum. In immunoblotting test, MoAb Hs-8 labelled a protein of 45 kDa in the extract of human sperm. Sequence analysis identified protein Hs-8 as GAPDHS (glyceraldehyde 3-phosphate dehydrohenase-spermatogenic). For this reason, commercial mouse anti-GAPDHS MoAb was applied in control tests. Both antibodies showed similar staining patterns in immunofluorescence tests, in electron microscopy and in immunoblot analysis. Moreover, both Hs-8 and anti-GAPDHS antibodies blocked sperm/zona pellucida binding. CONCLUSION: GAPDHS is a sperm-specific glycolytic enzyme involved in energy production during spermatogenesis and sperm motility; its role in the sperm head is unknown. In this study, we identified the antigen with Hs8 antibody and confirmed its localization in the apical part of the sperm head in addition to the principal piece of the flagellum. In an indirect binding assay, we confirmed the potential role of GAPDHS as a binding protein that is involved in the secondary sperm/oocyte binding.
- MeSH
- Acrosome metabolism MeSH
- Energy Metabolism MeSH
- Flagella metabolism MeSH
- Glyceraldehyde-3-Phosphate Dehydrogenases analysis genetics physiology MeSH
- Sperm-Ovum Interactions MeSH
- Humans MeSH
- Sperm Motility MeSH
- Mice, Inbred BALB C MeSH
- Mice MeSH
- Swine metabolism MeSH
- Spermatogenesis MeSH
- Spermatozoa metabolism MeSH
- Zona Pellucida metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Glyceraldehyde-3-Phosphate Dehydrogenases MeSH