Nejvíce citovaný článek - PubMed ID 19358525
Aqueous solutions of a thermoresponsive diblock copolymer poly(di-[ethylene glycol] methyl ether methacrylate)-b-poly(2-[diisopropylamino] ethyl methacrylate) (PDEGMA-b-PDIPAEMA) were studied by static, dynamic and electrophoretic light scattering, small-angle X-ray scattering and differential scanning calorimetry. Thermoresponsive behavior of PDEGMA-b-PDIPAEMA was investigated at two pH values, pH = 2, at which the terminal carboxylic group of the PDEGMA chain and the PDIPAEMA block are protonated, and pH = 7, where the carboxyl terminal group is ionized while the PDIPAEMA block is partially deprotonated and more hydrophobic. Both at pH = 2 and 7, PDEGMA-b-PDIPAEMA copolymer underwent extensive association (the size of the aggregates was between 100 and 300 nm), indicating strong interchain interactions. While the measurements confirmed thermoresponsive behavior of PDEGMA-b-PDIPAEMA at pH = 7, no changes in the association with temperature were observed at pH 2 as the thermoresponsivity of PDEGMA was suppressed by hydrogen bonding between carboxylic groups and PDEGMA segments, as well as due to the increased hydrophilicity of the PDIPAEMA block. Fluorescence measurements with pyrene as a fluorescent probe showed that both at pH = 2 and pH = 7 the associates were able to solubilize hydrophobic substances.
- Klíčová slova
- association, block copolymers, pH-responsive polymers, thermoresponsive polymers,
- Publikační typ
- časopisecké články MeSH
Aqueous solutions of some polymers exhibit a lower critical solution temperature (LCST); that is, they form phase-separated aggregates when heated above a threshold temperature. Such polymers found many promising (bio)medical applications, including in situ thermogelling with controlled drug release, polymer-supported radiotherapy (brachytherapy), immunotherapy, and wound dressing, among others. Yet, despite the extensive research on medicinal applications of thermoresponsive polymers, their biodistribution and fate after administration remained unknown. Thus, herein, they studied the pharmacokinetics of four different thermoresponsive polyacrylamides after intramuscular administration in mice. In vivo, these thermoresponsive polymers formed depots that subsequently dissolved with a two-phase kinetics (depot maturation, slow redissolution) with half-lives 2 weeks to 5 months, as depot vitrification prolonged their half-lives. Additionally, the decrease of TCP of a polymer solution increased the density of the intramuscular depot. Moreover, they detected secondary polymer depots in the kidneys and liver; these secondary depots also followed two-phase kinetics (depot maturation and slow dissolution), with half-lives 8 to 38 days (kidneys) and 15 to 22 days (liver). Overall, these findings may be used to tailor the properties of thermoresponsive polymers to meet the demands of their medicinal applications. Their methods may become a benchmark for future studies of polymer biodistribution.
- Klíčová slova
- LCST, biodistribution, poly(2,2-difluoroethyl)acrylamide, poly(N,N-diethylacrylamide), poly(N-acryloylpyrolidine), poly(N-isopropylacrylamide), polyacrylamide, rational polymer design,
- MeSH
- myši MeSH
- polymery * MeSH
- teplota MeSH
- tkáňová distribuce MeSH
- uvolňování léčiv MeSH
- voda * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- polymery * MeSH
- voda * MeSH