Nejvíce citovaný článek - PubMed ID 19654010
The assembly of F(1)F(O)-ATP synthase is disrupted upon interference of RNA editing in Trypanosoma brucei
Trypanosoma brucei is an extracellular parasite that alternates between an insect vector (procyclic form) and the bloodstream of a mammalian host (bloodstream form). While it was previously reported that mitochondrial release factor 1 (TbMrf1) is essential in cultured procyclic form cells, we demonstrate here that in vitro bloodstream form cells can tolerate the elimination of TbMrf1. Therefore, we explored if this discrepancy is due to the unique bioenergetics of the parasite since procyclic form cells rely on oxidative phosphorylation; whereas bloodstream form cells utilize glycolysis for ATP production and FoF1-ATPase to maintain the essential mitochondrial membrane potential. The observed disruption of intact bloodstream form FoF1-ATPases serves as a proxy to indicate that the translation of its mitochondrially encoded subunit A6 is impaired without TbMrf1. While these null mutants have a decreased mitochondrial membrane potential, they have adapted by increasing their dependence on the electrogenic contributions of the ADP/ATP carrier to maintain the mitochondrial membrane potential above the minimum threshold required for T. brucei viability in vitro. However, this inefficient compensatory mechanism results in avirulent mutants in mice. Finally, the depletion of the codon-independent release factor TbPth4 in the TbMrf1 knockouts further exacerbates the characterized mitchondrial phenotypes.
- MeSH
- fyziologická adaptace * MeSH
- membránový potenciál mitochondrií genetika MeSH
- mitochondriální proteiny genetika metabolismus MeSH
- mitochondrie * genetika metabolismus MeSH
- myši inbrední BALB C MeSH
- myši MeSH
- oxidativní fosforylace MeSH
- protonové ATPasy genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- stadia vývoje * MeSH
- Trypanosoma brucei brucei * genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- mitochondriální proteiny MeSH
- protonové ATPasy MeSH
- protozoální proteiny MeSH
Trypanosoma brucei is the causative agent of the human and veterinarian diseases African sleeping sickness and nagana. A majority of its mitochondrial-encoded transcripts undergo RNA editing, an essential process of post-transcriptional uridine insertion and deletion to produce translatable mRNA. Besides the well-characterized RNA editing core complex, the mitochondrial RNA-binding 1 (MRB1) complex is one of the key players. It comprises a core complex of about six proteins, guide RNA-associated proteins (GAPs) 1/2, which form a heterotetramer that binds and stabilizes gRNAs, plus MRB5390, MRB3010, and MRB11870, which play roles in initial stages of RNA editing, presumably guided by the first gRNA:mRNA duplex in the case of the latter two proteins. To better understand all functions of the MRB1 complex, we performed a functional analysis of the MRB8620 core subunit, the only one not characterized so far. Here we show that MRB8620 plays a role in RNA editing in both procyclic and bloodstream stages of T. brucei, which reside in the tsetse fly vector and mammalian circulatory system, respectively. While RNAi silencing of MRB8620 does not affect procyclic T. brucei fitness when grown in glucose-containing media, it is somewhat compromised in cells grown in the absence of this carbon source. MRB8620 is crucial for integrity of the MRB1 core, such as its association with GAP1/2, which presumably acts to deliver gRNAs to this complex. In contrast, GAP1/2 is not required for the fabrication of the MRB1 core. Disruption of the MRB1 core assembly is followed by the accumulation of mRNAs associated with GAP1/2.
- Klíčová slova
- RNA editing, mitochondrion, trypanosome,
- MeSH
- buněčné linie MeSH
- editace RNA * MeSH
- messenger RNA genetika metabolismus MeSH
- mitochondriální proteiny fyziologie MeSH
- mitochondrie MeSH
- protozoální proteiny fyziologie MeSH
- Trypanosoma brucei brucei genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- messenger RNA MeSH
- mitochondriální proteiny MeSH
- protozoální proteiny MeSH
In the infectious stage of Trypanosoma brucei, an important parasite of humans and livestock, the mitochondrial (mt) membrane potential (Δψm) is uniquely maintained by the ATP hydrolytic activity and subsequent proton pumping of the essential FoF1-ATPase. Intriguingly, this multiprotein complex contains several trypanosome-specific subunits of unknown function. Here, we demonstrate that one of the largest novel subunits, ATPaseTb2, is membrane-bound and localizes with monomeric and multimeric assemblies of the FoF1-ATPase. Moreover, RNAi silencing of ATPaseTb2 quickly leads to a significant decrease of the Δψm that manifests as a decreased growth phenotype, indicating that the FoF1-ATPase is impaired. To further explore the function of this protein, we employed a trypanosoma strain that lacks mtDNA (dyskinetoplastic, Dk) and thus subunit a, an essential component of the proton pore in the membrane Fo-moiety. These Dk cells generate the Δψm by combining the hydrolytic activity of the matrix-facing F1-ATPase and the electrogenic exchange of ATP4- for ADP3- by the ATP/ADP carrier (AAC). Surprisingly, in addition to the expected presence of F1-ATPase, the monomeric and multimeric FoF1-ATPase complexes were identified. In fact, the immunoprecipitation of a F1-ATPase subunit demonstrated that ATPaseTb2 was a component of these complexes. Furthermore, RNAi studies established that the membrane-bound ATPaseTb2 subunit is essential for maintaining normal growth and the Δψm of Dk cells. Thus, even in the absence of subunit a, a portion of the FoF1-ATPase is assembled in Dk cells.
- MeSH
- geneticky modifikované organismy MeSH
- kultivované buňky MeSH
- lidé MeSH
- membránové proteiny fyziologie MeSH
- mitochondriální DNA genetika MeSH
- mitochondrie genetika metabolismus MeSH
- podjednotky proteinů fyziologie MeSH
- protonové ATPasy fyziologie MeSH
- skot MeSH
- Trypanosoma brucei brucei * genetika metabolismus patogenita ultrastruktura MeSH
- trypanozomóza africká krev parazitologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- skot MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- membránové proteiny MeSH
- mitochondriální DNA MeSH
- podjednotky proteinů MeSH
- protonové ATPasy MeSH
Two key biological features distinguish Trypanosoma evansi from the T. brucei group: independence from the tsetse fly as obligatory vector, and independence from the need for functional mitochondrial DNA (kinetoplast or kDNA). In an effort to better understand the molecular causes and consequences of these differences, we sequenced the genome of an akinetoplastic T. evansi strain from China and compared it to the T. b. brucei reference strain. The annotated T. evansi genome shows extensive similarity to the reference, with 94.9% of the predicted T. b. brucei coding sequences (CDS) having an ortholog in T. evansi, and 94.6% of the non-repetitive orthologs having a nucleotide identity of 95% or greater. Interestingly, several procyclin-associated genes (PAGs) were disrupted or not found in this T. evansi strain, suggesting a selective loss of function in the absence of the insect life-cycle stage. Surprisingly, orthologous sequences were found in T. evansi for all 978 nuclear CDS predicted to represent the mitochondrial proteome in T. brucei, although a small number of these may have lost functionality. Consistent with previous results, the F1FO-ATP synthase γ subunit was found to have an A281 deletion, which is involved in generation of a mitochondrial membrane potential in the absence of kDNA. Candidates for CDS that are absent from the reference genome were identified in supplementary de novo assemblies of T. evansi reads. Phylogenetic analyses show that the sequenced strain belongs to a dominant group of clonal T. evansi strains with worldwide distribution that also includes isolates classified as T. equiperdum. At least three other types of T. evansi or T. equiperdum have emerged independently. Overall, the elucidation of the T. evansi genome sequence reveals extensive similarity of T. brucei and supports the contention that T. evansi should be classified as a subspecies of T. brucei.
- MeSH
- analýza hlavních komponent MeSH
- fylogeneze * MeSH
- genom protozoální * MeSH
- jednonukleotidový polymorfismus MeSH
- mikrosatelitní repetice MeSH
- protozoální proteiny genetika metabolismus MeSH
- regulace genové exprese MeSH
- Trypanosoma klasifikace genetika MeSH
- trypanosomové variantní povrchové glykoproteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- protozoální proteiny MeSH
- trypanosomové variantní povrchové glykoproteiny MeSH
Trypanosoma brucei brucei has two distinct developmental stages, the procyclic stage in the insect and the bloodstream stage in the mammalian host. The significance of each developmental stage is punctuated by specific changes in metabolism. In the insect, T. b. brucei is strictly dependent on mitochondrial function and thus respiration to generate the bulk of its ATP, whereas in the mammalian host it relies heavily on glycolysis. These observations have raised questions about the importance of mitochondrial function in the bloodstream stage. Peculiarly, akinetoplastic strains of Trypanosoma brucei evansi that lack mitochondrial DNA do exist in the wild and are developmentally locked in the glycolysis-dependent bloodstream stage. Using RNAi we show that two mitochondrion-imported proteins, mitochondrial RNA polymerase and guide RNA associated protein 1, are still imported into the nucleic acids-lacking organelle of T. b. evansi, making the need for these proteins futile. We also show that, like in the T. b. brucei procyclic stage, the mitochondria of both bloodstream stage of T. b. brucei and T. b. evansi import various tRNAs, including those that undergo thiolation. However, we were unable to detect mitochondrial thiolation in the akinetoplastic organelle. Taken together, these data suggest a lack of connection between nuclear and mitochondrial communication in strains of T. b. evansi that lost mitochondrial genome and that do not required an insect vector for survival.
- MeSH
- adenosintrifosfát metabolismus MeSH
- buněčné jádro genetika metabolismus MeSH
- DNA řízené RNA-polymerasy genetika metabolismus MeSH
- geneticky modifikované organismy MeSH
- glykolýza fyziologie MeSH
- guide RNA, Kinetoplastida metabolismus MeSH
- kinetoplastová DNA metabolismus MeSH
- mezibuněčná komunikace MeSH
- mitochondrie genetika metabolismus MeSH
- oxidativní fosforylace MeSH
- proteiny genetika metabolismus MeSH
- RNA interference MeSH
- RNA transferová genetika metabolismus MeSH
- transport proteinů MeSH
- transport RNA MeSH
- Trypanosoma fyziologie MeSH
- trypanozomiáza parazitologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- adenosintrifosfát MeSH
- DNA řízené RNA-polymerasy MeSH
- guide RNA, Kinetoplastida MeSH
- kinetoplastová DNA MeSH
- proteiny MeSH
- RNA transferová MeSH