Nejvíce citovaný článek - PubMed ID 19767732
Immunogenic cell death (ICD) refers to an immunologically distinct process of regulated cell death that activates, rather than suppresses, innate and adaptive immune responses. Such responses culminate into T cell-driven immunity against antigens derived from dying cancer cells. The potency of ICD is dependent on the immunogenicity of dying cells as defined by the antigenicity of these cells and their ability to expose immunostimulatory molecules like damage-associated molecular patterns (DAMPs) and cytokines like type I interferons (IFNs). Moreover, it is crucial that the host's immune system can adequately detect the antigenicity and adjuvanticity of these dying cells. Over the years, several well-known chemotherapies have been validated as potent ICD inducers, including (but not limited to) anthracyclines, paclitaxels, and oxaliplatin. Such ICD-inducing chemotherapeutic drugs can serve as important combinatorial partners for anti-cancer immunotherapies against highly immuno-resistant tumors. In this Trial Watch, we describe current trends in the preclinical and clinical integration of ICD-inducing chemotherapy in the existing immuno-oncological paradigms.
- Klíčová slova
- CAR T cells, antigen-presenting cells, chemotherapy, danger signals, dendritic cell, immune-checkpoint blockers, immunogenic cell death, immunotherapy,
- MeSH
- buněčná smrt MeSH
- cytokiny metabolismus MeSH
- imunogenní buněčná smrt MeSH
- lidé MeSH
- nádory * MeSH
- protinádorové látky * farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- cytokiny MeSH
- protinádorové látky * MeSH
Immunological tolerance of myeloma cells represents a critical obstacle in achieving long-term disease-free survival for multiple myeloma (MM) patients. Over the past two decades, remarkable preclinical efforts to understand MM biology have led to the clinical approval of several targeted and immunotherapeutic agents. Among them, it is now clear that chemotherapy can also make cancer cells "visible" to the immune system and thus reactivate anti-tumor immunity. This knowledge represents an important resource in the treatment paradigm of MM, whereas immune dysfunction constitutes a clear obstacle to the cure of the disease. In this review, we highlight the importance of defining the immunological effects of chemotherapy in MM with the goal of enhancing the clinical management of patients. This area of investigation will open new avenues of research to identify novel immunogenic anti-MM agents and inform the optimal integration of chemotherapy with immunotherapy.
- Klíčová slova
- DAMPs, ICD, immunogenic chemotherapy, microenvironment, myeloma,
- MeSH
- imunoterapie MeSH
- lidé MeSH
- mnohočetný myelom * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
Chemotherapy, radiation therapy, as well as targeted anticancer agents can induce clinically relevant tumor-targeting immune responses, which critically rely on the antigenicity of malignant cells and their capacity to generate adjuvant signals. In particular, immunogenic cell death (ICD) is accompanied by the exposure and release of numerous damage-associated molecular patterns (DAMPs), which altogether confer a robust adjuvanticity to dying cancer cells, as they favor the recruitment and activation of antigen-presenting cells. ICD-associated DAMPs include surface-exposed calreticulin (CALR) as well as secreted ATP, annexin A1 (ANXA1), type I interferon, and high-mobility group box 1 (HMGB1). Additional hallmarks of ICD encompass the phosphorylation of eukaryotic translation initiation factor 2 subunit-α (EIF2S1, better known as eIF2α), the activation of autophagy, and a global arrest in transcription and translation. Here, we outline methodological approaches for measuring ICD markers in vitro and ex vivo for the discovery of next-generation antineoplastic agents, the development of personalized anticancer regimens, and the identification of optimal therapeutic combinations for the clinical management of cancer.
- MeSH
- imunogenní buněčná smrt imunologie MeSH
- imunoterapie metody MeSH
- lidé MeSH
- nádory terapie MeSH
- objevování léků metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
Cells succumbing to stress via regulated cell death (RCD) can initiate an adaptive immune response associated with immunological memory, provided they display sufficient antigenicity and adjuvanticity. Moreover, multiple intracellular and microenvironmental features determine the propensity of RCD to drive adaptive immunity. Here, we provide an updated operational definition of immunogenic cell death (ICD), discuss the key factors that dictate the ability of dying cells to drive an adaptive immune response, summarize experimental assays that are currently available for the assessment of ICD in vitro and in vivo, and formulate guidelines for their interpretation.
- Klíčová slova
- immunology, molecular biology, oncology,
- MeSH
- imunogenní buněčná smrt genetika MeSH
- konsensus MeSH
- lidé MeSH
- molekulární biologie metody MeSH
- směrnice jako téma MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Progressing malignancies establish robust immunosuppressive networks that operate both systemically and locally. In particular, as tumors escape immunosurveillance, they recruit increasing amounts of myeloid and lymphoid cells that exert pronounced immunosuppressive effects. These cells not only prevent the natural recognition of growing neoplasms by the immune system, but also inhibit anticancer immune responses elicited by chemo-, radio- and immuno therapeutic interventions. Throughout the past decade, multiple strategies have been devised to counteract the accumulation or activation of tumor-infiltrating immunosuppressive cells for therapeutic purposes. Here, we review recent preclinical and clinical advances on the use of small molecules that target the immunological tumor microenvironment for cancer therapy. These agents include inhibitors of indoleamine 2,3-dioxigenase 1 (IDO1), prostaglandin E2, and specific cytokine receptors, as well as modulators of intratumoral purinergic signaling and arginine metabolism.
- Klíčová slova
- Adenosine, IDO1, PGE2, Tregs, myeloid-derived suppressor cells, tumor-associated macrophages,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The immunogenicity of malignant cells has recently been acknowledged as a critical determinant of efficacy in cancer therapy. Thus, besides developing direct immunostimulatory regimens, including dendritic cell-based vaccines, checkpoint-blocking therapies, and adoptive T-cell transfer, researchers have started to focus on the overall immunobiology of neoplastic cells. It is now clear that cancer cells can succumb to some anticancer therapies by undergoing a peculiar form of cell death that is characterized by an increased immunogenic potential, owing to the emission of the so-called "damage-associated molecular patterns" (DAMPs). The emission of DAMPs and other immunostimulatory factors by cells succumbing to immunogenic cell death (ICD) favors the establishment of a productive interface with the immune system. This results in the elicitation of tumor-targeting immune responses associated with the elimination of residual, treatment-resistant cancer cells, as well as with the establishment of immunological memory. Although ICD has been characterized with increased precision since its discovery, several questions remain to be addressed. Here, we summarize and tabulate the main molecular, immunological, preclinical, and clinical aspects of ICD, in an attempt to capture the essence of this phenomenon, and identify future challenges for this rapidly expanding field of investigation.
- Klíčová slova
- anti-tumor immunity, immunogenicity, immunotherapy, molecular medicine, oncoimmunology, patient prognosis, translational medicine,
- Publikační typ
- časopisecké články MeSH
It is now clear that human neoplasms form, progress, and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (re)activation of tumor-targeting immune responses. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents, and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as "immunogenic cell death." Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as "damage-associated molecular patterns" (DAMPs), may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.
- Klíčová slova
- ATP, ER stress response, HSPs, autophagy, calreticulin, type I interferon,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The term "immunogenic cell death" (ICD) is commonly employed to indicate a peculiar instance of regulated cell death (RCD) that engages the adaptive arm of the immune system. The inoculation of cancer cells undergoing ICD into immunocompetent animals elicits a specific immune response associated with the establishment of immunological memory. Only a few agents are intrinsically endowed with the ability to trigger ICD. These include a few chemotherapeutics that are routinely employed in the clinic, like doxorubicin, mitoxantrone, oxaliplatin, and cyclophosphamide, as well as some agents that have not yet been approved for use in humans. Accumulating clinical data indicate that the activation of adaptive immune responses against dying cancer cells is associated with improved disease outcome in patients affected by various neoplasms. Thus, novel therapeutic regimens that trigger ICD are urgently awaited. Here, we discuss current combinatorial approaches to convert otherwise non-immunogenic instances of RCD into bona fide ICD.
- Klíčová slova
- ATP, HMGB1, autophagy, calreticulin, endoplasmic reticulum stress, type I interferon,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The term "immunogenic cell death" (ICD) is now employed to indicate a functionally peculiar form of apoptosis that is sufficient for immunocompetent hosts to mount an adaptive immune response against dead cell-associated antigens. Several drugs have been ascribed with the ability to provoke ICD when employed as standalone therapeutic interventions. These include various chemotherapeutics routinely employed in the clinic (e.g., doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin) as well as some anticancer agents that are still under preclinical or clinical development (e.g., some microtubular inhibitors of the epothilone family). In addition, a few drugs are able to convert otherwise non-immunogenic instances of cell death into bona fide ICD, and may therefore be employed as chemotherapeutic adjuvants within combinatorial regimens. This is the case of cardiac glycosides, like digoxin and digitoxin, and zoledronic acid. Here, we discuss recent developments on anticancer chemotherapy based on ICD inducers.
- Klíčová slova
- ALL, acute lymphoblastic leukemia, AML, acute myeloid leukemia, CML, chronic myeloid leukemia, DAMP, damage-associated molecular pattern, EGFR, epidermal growth factor receptor, EOX, epirubicin plus oxaliplatin plus capecitabine, ER, endoplasmic reticulum, FDA, Food and Drug Administration, FOLFIRINOX, folinic acid plus 5-fluorouracil plus irinotecan plus oxaliplatin, FOLFOX, folinic acid plus 5-fluorouracil plus oxaliplatin, GEMOX, gemcitabine plus oxaliplatin, GM-CSF, granulocyte-macrophage colony-stimulating factor, HCC, hepatocellular carcinoma, ICD, immunogenic cell death, MM, multiple myeloma, NHL, non-Hodgkin's lymphoma, NSCLC, non-small cell lung carcinoma, TACE, transcatheter arterial chemoembolization, XELOX, capecitabine plus oxaliplatin, antigen-presenting cell, autophagy, damage-associated molecular pattern, dendritic cell, endoplasmic reticulum stress, mAb, monoclonal antibody, type I interferon,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
The concept of immunogenic cancer cell death (ICD), as originally observed during the treatment with several chemotherapeutics or ionizing irradiation, has revolutionized the view on the development of new anticancer therapies. ICD is defined by endoplasmic reticulum (ER) stress response, reactive oxygen species (ROS) generation, emission of danger-associated molecular patterns and induction of antitumor immunity. Here we describe known and emerging cancer cell death-inducing physical modalities, such as ionizing irradiation, ultraviolet C light, Photodynamic Therapy (PDT) with Hypericin, high hydrostatic pressure (HHP) and hyperthermia (HT), which have been shown to elicit effective antitumor immunity. We discuss the evidence of ICD induced by these modalities in cancer patients together with their applicability in immunotherapeutic protocols and anticancer vaccine development.
- Klíčová slova
- ATP, Adenosine triphosphate, CRT, calreticulin, DAMPs, danger-associated molecular patterns, DC, dendritic cells, EGFR, endothelial growth factor receptor, ER, endoplasmic reticulum, HHP, high hydrostatic pressure, HMGB1, high-mobility group box 1, HSP, heat shock protein, HT, hyperthermia, Hyp-PDT, Hypericin-based Photodynamic therapy, ICD, immunogenic cell death, IFNγ, interferon-γ, NDV, Newcastle Disease Virus, ROS, reactive oxygen species, RT, radiotherapy, TLR, Toll-like receptor, UVC, ultraviolet C light, cancer immunotherapy, eIF2α, eukaryotic translation initiation factor 2α, high hydrostatic pressure, hyperthermia, immunogenic cell death, ionizing irradiation, photodynamic therapy with hypericin,
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH