Most cited article - PubMed ID 20138518
Preparation and in vitro screening of symmetrical bispyridinium cholinesterase inhibitors bearing different connecting linkage-initial study for Myasthenia gravis implications
The pyridinium-2-carbaldoximes with quinolinium carboxamide moiety were designed and synthesised as cholinesterase reactivators. The prepared compounds showed intermediate-to-high inhibition of both cholinesterases when compared to standard oximes. Their reactivation ability was evaluated in vitro on human recombinant acetylcholinesterase (hrAChE) and human recombinant butyrylcholinesterase (hrBChE) inhibited by nerve agent surrogates (NIMP, NEMP, and NEDPA) or paraoxon. In the reactivation screening, one compound was able to reactivate hrAChE inhibited by all used organophosphates and two novel compounds were able to reactivate NIMP/NEMP-hrBChE. The reactivation kinetics revealed compound 11 that proved to be excellent reactivator of paraoxon-hrAChE better to obidoxime and showed increased reactivation of NIMP/NEMP-hrBChE, although worse to obidoxime. The molecular interactions of studied reactivators were further identified by in silico calculations. Molecular modelling results revealed the importance of creation of the pre-reactivation complex that could lead to better reactivation of both cholinesterases together with reducing particular interactions for lower intrinsic inhibition by the oxime.
- Keywords
- Organophosphate, acetylcholinesterase, butyrylcholinesterase, oxime, reactivator,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Butyrylcholinesterase metabolism MeSH
- Quinolinium Compounds chemical synthesis chemistry pharmacology MeSH
- Cholinesterase Inhibitors chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Molecular Structure MeSH
- Pyridinium Compounds chemical synthesis chemistry pharmacology MeSH
- Recombinant Proteins metabolism MeSH
- Molecular Docking Simulation MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Butyrylcholinesterase MeSH
- Quinolinium Compounds MeSH
- Cholinesterase Inhibitors MeSH
- Pyridinium Compounds MeSH
- Recombinant Proteins MeSH
BACKGROUND: Intoxication by nerve agents could be prevented by using small acetylcholinesterase inhibitors (eg, pyridostigmine) for potentially exposed personnel. However, the serious side effects of currently used drugs led to research of novel potent molecules for prophylaxis of organophosphorus intoxication. METHODS: The molecular design, molecular docking, chemical synthesis, in vitro methods (enzyme inhibition, cytotoxicity, and nicotinic receptors modulation), and in vivo methods (acute toxicity and prophylactic effect) were used to study bispyridinium, bisquinolinium, bisisoquinolinium, and pyridinium-quinolinium/isoquinolinium molecules presented in this study. RESULTS: The studied molecules showed non-competitive inhibitory ability towards human acetylcholinesterase in vitro that was further confirmed by molecular modelling studies. Several compounds were selected for further studies. First, their cytotoxicity, nicotinic receptors modulation, and acute toxicity (lethal dose for 50% of laboratory animals [LD50]; mice and rats) were tested to evaluate their safety with promising results. Furthermore, their blood levels were measured to select the appropriate time for prophylactic administration. Finally, the protective ratio of selected compounds against soman-induced toxicity was determined when selected compounds were found similarly potent or only slightly better to standard pyridostigmine. CONCLUSION: The presented small bisquaternary molecules did not show overall benefit in prophylaxis of soman-induced in vivo toxicity.
- Keywords
- AChE inhibitors, nerve agents, pre-treatment, prophylaxis, soman, toxicity,
- MeSH
- Acetylcholinesterase metabolism MeSH
- Cell Line MeSH
- Cholinesterase Inhibitors chemistry pharmacology MeSH
- HeLa Cells MeSH
- Small Molecule Libraries chemistry pharmacology MeSH
- Humans MeSH
- Models, Molecular MeSH
- Molecular Structure MeSH
- Nerve Agents adverse effects MeSH
- Soman adverse effects MeSH
- Cell Survival drug effects MeSH
- Dose-Response Relationship, Drug MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholinesterase MeSH
- Cholinesterase Inhibitors MeSH
- Small Molecule Libraries MeSH
- Nerve Agents MeSH
- Soman MeSH