Nejvíce citovaný článek - PubMed ID 20231818
Ever-increasing availability of experimental volumetric data (e.g., in .ccp4, .mrc, .map, .rec, .zarr, .ome.tif formats) and advances in segmentation software (e.g., Amira, Segger, IMOD) and formats (e.g., .am, .seg, .mod, etc.) have led to a demand for efficient web-based visualization tools. Despite this, current solutions remain scarce, hindering data interpretation and dissemination. Previously, we introduced Mol* Volumes & Segmentations (Mol* VS), a web application for the visualization of volumetric, segmentation, and annotation data (e.g., semantically relevant information on biological entities corresponding to individual segmentations such as Gene Ontology terms or PDB IDs). However, this lacked important features such as the ability to edit annotations (e.g., assigning user-defined descriptions of a segment) and seamlessly share visualizations. Additionally, setting up Mol* VS required a substantial programming background. This article presents an updated version, Mol* VS 2.0, that addresses these limitations. As part of Mol* VS 2.0, we introduce the Annotation Editor, a user-friendly graphical interface for editing annotations, and the Volumes & Segmentations Toolkit (VSToolkit) for generating shareable files with visualization data. The outlined protocols illustrate the utilization of Mol* VS 2.0 for visualization of volumetric and segmentation data across various scales, showcasing the progress in the field of molecular complex visualization. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: VSToolkit-setting up and visualizing a user-constructed Mol* VS 2.0 database entry Basic Protocol 2: VSToolkit-visualizing multiple time frames and volume channels Support Protocol 1: Example: Adding database entry idr-13457537 Alternate Protocol 1: Local-server-and-viewer-visualizing multiple time frames and volume channels Support Protocol 2: Addition of database entry custom-tubhiswt Basic Protocol 3: VSToolkit-visualizing a specific channel and time frame Basic Protocol 4: VSToolkit-visualizing geometric segmentation Basic Protocol 5: VSToolkit-visualizing lattice segmentations Alternate Protocol 2: "Local-server-and-viewer"-visualizing lattice segmentations Basic Protocol 6: "Local-server-and-viewer"-visualizing multiple volume channels Support Protocol 3: Deploying a server API Support Protocol 4: Hosting Mol* viewer with VS extension 2.0 Support Protocol 5: Example: Addition of database entry empiar-11756 Support Protocol 6: Example: Addition of database entry emd-1273 Support Protocol 7: Editing annotations Support Protocol 8: Addition of database entry idr-5025553.
- Klíčová slova
- 3D visualization tools, annotation data, large‐scale datasets, segmentation data, volumetric data,
- MeSH
- internet MeSH
- počítačová grafika MeSH
- software * MeSH
- uživatelské rozhraní počítače MeSH
- vizualizace dat MeSH
- Publikační typ
- časopisecké články MeSH
Somatosensory information is propagated from the periphery to the cerebral cortex by two parallel pathways through the ventral posterolateral (VPL) and ventral posteromedial (VPM) thalamus. VPL and VPM neurons receive somatosensory signals from the body and head, respectively. VPL and VPM neurons may also receive cell type-specific GABAergic input from the reticular nucleus of the thalamus. Although VPL and VPM neurons have distinct connectivity and physiological roles, differences in their functional properties remain unclear as they are often studied as one ventrobasal thalamus neuron population. Here, we directly compared synaptic and intrinsic properties of VPL and VPM neurons in C57Bl/6J mice of both sexes aged P25-P32. VPL neurons showed greater depolarization-induced spike firing and spike frequency adaptation than VPM neurons. VPL and VPM neurons fired similar numbers of spikes during hyperpolarization rebound bursts, but VPM neurons exhibited shorter burst latency compared with VPL neurons, which correlated with larger sag potential. VPM neurons had larger membrane capacitance and more complex dendritic arbors. Recordings of spontaneous and evoked synaptic transmission suggested that VPL neurons receive stronger excitatory synaptic input, whereas inhibitory synapse strength was stronger in VPM neurons. This work indicates that VPL and VPM thalamocortical neurons have distinct intrinsic and synaptic properties. The observed functional differences could have important implications for their specific physiological and pathophysiological roles within the somatosensory thalamocortical network.NEW & NOTEWORTHY This study revealed that somatosensory thalamocortical neurons in the VPL and VPM have substantial differences in excitatory synaptic input and intrinsic firing properties. The distinct properties suggest that VPL and VPM neurons could process somatosensory information differently and have selective vulnerability to disease. This work improves our understanding of nucleus-specific neuron function in the thalamus and demonstrates the critical importance of studying these parallel somatosensory pathways separately.
- Klíčová slova
- somatosensory thalamus, synaptic transmission, thalamocortical neuron, ventral posterolateral nucleus, ventral posteromedial nucleus,
- MeSH
- mozková kůra MeSH
- myši MeSH
- nervový přenos fyziologie MeSH
- neurony * fyziologie MeSH
- somatosenzorické korové centrum fyziologie MeSH
- synapse fyziologie MeSH
- thalamus * fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Segmentation helps interpret imaging data in a biological context. With the development of powerful tools for automated segmentation, public repositories for imaging data have added support for sharing and visualizing segmentations, creating the need for interactive web-based visualization of 3D volume segmentations. To address the ongoing challenge of integrating and visualizing multimodal data, we developed Mol* Volumes and Segmentations (Mol*VS), which enables the interactive, web-based visualization of cellular imaging data supported by macromolecular data and biological annotations. Mol*VS is fully integrated into Mol* Viewer, which is already used for visualization by several public repositories. All EMDB and EMPIAR entries with segmentation datasets are accessible via Mol*VS, which supports the visualization of data from a wide range of electron and light microscopy experiments. Additionally, users can run a local instance of Mol*VS to visualize and share custom datasets in generic or application-specific formats including volumes in .ccp4, .mrc, and .map, and segmentations in EMDB-SFF .hff, Amira .am, iMod .mod, and Segger .seg. Mol*VS is open source and freely available at https://molstarvolseg.ncbr.muni.cz/.
- MeSH
- internet MeSH
- makromolekulární látky MeSH
- mikroskopie * MeSH
- počítačové zpracování obrazu * MeSH
- software * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- makromolekulární látky MeSH
Image analysis is key to extracting quantitative information from scientific microscopy images, but the methods involved are now often so refined that they can no longer be unambiguously described by written protocols. We introduce BIAFLOWS, an open-source web tool enabling to reproducibly deploy and benchmark bioimage analysis workflows coming from any software ecosystem. A curated instance of BIAFLOWS populated with 34 image analysis workflows and 15 microscopy image datasets recapitulating common bioimage analysis problems is available online. The workflows can be launched and assessed remotely by comparing their performance visually and according to standard benchmark metrics. We illustrated these features by comparing seven nuclei segmentation workflows, including deep-learning methods. BIAFLOWS enables to benchmark and share bioimage analysis workflows, hence safeguarding research results and promoting high-quality standards in image analysis. The platform is thoroughly documented and ready to gather annotated microscopy datasets and workflows contributed by the bioimaging community.
- Klíčová slova
- benchmarking, bioimaging, community, deep learning, deployment, image analysis, reproducibility, software, web application,
- Publikační typ
- časopisecké články MeSH