Nejvíce citovaný článek - PubMed ID 20525585
The worldwide, ecologically relevant lichen-forming genus Parmelia currently includes 41 accepted species, of which the Parmelia sulcata group (PSULgp) and the Parmelia saxatilis group (PSAXgp) have received considerable attention over recent decades; however, phycobiont diversity is poorly known in Parmelia s. lat. Here, we studied the diversity of Trebouxia microalgae associated with 159 thalli collected from 30 locations, including nine Parmelia spp.: P. barrenoae, P. encryptata, P. ernstiae, P. mayi, P. omphalodes, P. saxatilis, P. serrana, P. submontana, and P. sulcata. The mycobionts were studied by carrying out phylogenetic analyses of the nrITS. Microalgae genetic diversity was examined by using both nrITS and LSU rDNA markers. To evaluate putative species boundaries, three DNA species delimitation analyses were performed on Trebouxia and Parmelia. All analyses clustered the mycobionts into two main groups: PSULgp and PSAXgp. Species delimitation identified 13 fungal and 15 algal species-level lineages. To identify patterns in specificity and selectivity, the diversity and abundance of the phycobionts were identified for each Parmelia species. High specificity of each Parmelia group for a given Trebouxia clade was observed; PSULgp associated only with clade I and PSAXgp with clade S. However, the degree of specificity is different within each group, since the PSAXgp mycobionts were less specific and associated with 12 Trebouxia spp., meanwhile those of PSULgp interacted only with three Trebouxia spp. Variation-partitioning analyses were conducted to detect the relative contributions of climate, geography, and symbiotic partner to phycobiont and mycobiont distribution patterns. Both analyses explained unexpectedly high portions of variability (99 and 98%) and revealed strong correlations between the fungal and algal diversity. Network analysis discriminated seven ecological clusters. Even though climatic conditions explained the largest proportion of the variation among these clusters, they seemed to show indifference relative to climatic parameters. However, the cluster formed by P. saxatilis A/P. saxatilis B/Trebouxia sp. 2/Trebouxia sp. S02/Trebouxia sp. 3A was identified to prefer cold-temperate as well as humid summer environments.
- Klíčová slova
- Trebouxia, distribution, habitat, microalgae, phycobiont, symbiosis,
- Publikační typ
- časopisecké články MeSH
Conservation efforts must be evidence-based, so rapid and economically feasible methods should be used to quantify diversity and distribution patterns. We have attempted to overcome current impediments to the gathering of biodiversity data by using integrative phylogenomic and three mtDNA fragment analyses. As a model, we sequenced the Metriorrhynchini beetle fauna, sampled from ~700 localities in three continents. The species-rich dataset included ~6500 terminals, ~ 1850 putative species delimited at 5% uncorrected pairwise threshold, possibly ~1000 of them unknown to science. Neither type of data could alone answer our questions on biodiversity and phylogeny. The phylogenomic backbone enabled the integrative delimitation of robustly defined natural genus-group units that will inform future research. Using constrained mtDNA analysis, we identified the spatial structure of species diversity, very high species-level endemism, and a biodiversity hotspot in New Guinea. We suggest that focused field research and subsequent laboratory and bioinformatic workflow steps would substantially accelerate the inventorying of any hyperdiverse tropical group with several thousand species. The outcome would be a scaffold for the incorporation of further data from environmental sequencing and ecological studies. The database of sequences could set a benchmark for the spatiotemporal evaluation of biodiversity, would support evidence-based conservation planning, and would provide a robust framework for systematic, biogeographic, and evolutionary studies.
- Klíčová slova
- biodiversity, conservation, ecology, evolutionary biology, mtDNA, net-winged beetles, phylogenomics,
- MeSH
- biodiverzita * MeSH
- biologická evoluce MeSH
- brouci klasifikace genetika MeSH
- fylogeneze * MeSH
- mitochondriální DNA genetika MeSH
- stanovení celkové genové exprese MeSH
- tropické klima MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Nová Guinea MeSH
- Názvy látek
- mitochondriální DNA MeSH
The red brocket deer Mazama americana Erxleben, 1777 is considered a polyphyletic complex of cryptic species with wide chromosomal divergence. Evidence indicates that the observed chromosomal divergences result in reproductive isolation. The description of a neotype for M. americana allowed its genetic characterization and represented a comparative basis to resolve the taxonomic uncertainties of the group. Thus, we designated a neotype for the synonym Mazama rufa Illiger, 1815 and tested its recognition as a distinct species from the M. americana complex with the analysis of morphological, cytogenetic and molecular data. We also evaluated its distribution by sampling fecal DNA in the wild. Morphological data from craniometry and body biometry indicated an overlap of quantitative measurements between M. rufa and the entire M. americana complex. The phylogenetic hypothesis obtained through mtDNA confirmed the reciprocal monophyly relationship between M. americana and M. rufa, and both were identified as distinct molecular operational taxonomic units by the General Mixed Yule Coalescent species delimitation analysis. Finally, classic cytogenetic data and fluorescence in situ hybridization with whole chromosome painting probes showed M. rufa with a karyotype of 2n = 52, FN = 56. Comparative analysis indicate that at least fifteen rearrangements separate M. rufa and M. americana (sensu stricto) karyotypes, which confirmed their substantial chromosomal divergence. This divergence should represent an important reproductive barrier and allow its characterization as a distinct and valid species. Genetic analysis of fecal samples demonstrated a wide distribution of M. rufa in the South American continent through the Atlantic Forest, Cerrado and south region of Amazon. Thus, we conclude for the revalidation of M. rufa as a distinct species under the concept of biological isolation, with its karyotype as the main diagnostic character. The present work serves as a basis for the taxonomic review of the M. americana complex, which should be mainly based on cytogenetic characterization and directed towards a better sampling of the Amazon region, the evaluation of available names in the species synonymy and a multi-locus phylogenetic analysis.
- Klíčová slova
- GMYC, Odocoileini, bayesian phylogenetic inference, cytotaxonomy, molecular cytogenetics, non-invasive sampling, scat detection dog,
- Publikační typ
- časopisecké články MeSH
Crenicichla is the largest and most widely distributed genus of Neotropical cichlids. Here, we analyze a mtDNA dataset comprising 681 specimens (including Teleocichla, a putative ingroup of Crenicichla) and 77 out of 105 presently recognized valid species (plus 10 out of 36 nominal synonyms plus over 50 putatively new species) from 129 locations in 31 major river drainages throughout the whole distribution of the genus in South America. Based on these data we make an inventory of diversity and highlight taxa and biogeographic areas worthy of further sampling effort and conservation protection. Using three methods of molecular species delimitation, we find between 126 and 168 species-like clusters, i.e., an average increase of species diversity of 65-121% with a range of increase between species groups. The increase ranges from 0% in the Missioneira and Macrophthama groups, through 25-40% (Lacustris group), 50-87% (Reticulata group, Teleocichla), 68-168% (Saxatilis group), 125-200% (Wallacii group), and 158-241% in the Lugubris group. We found a high degree of congruence between clusters derived from the three used methods of species delimitation. Overall, our results recognize substantially underestimated diversity in Crenicichla including Teleocichla. Most of the newly delimited putative species are from the Amazon-Orinoco-Guiana (AOG) core area (Greater Amazonia) of the Neotropical region, especially from the Brazilian and Guiana shield areas of which the former is under the largest threat and largest degree of environmental degradation of all the Amazon.
- Klíčová slova
- Conservation, Endemism, Freshwater fishes, Molecular-clock dating, Phylogeography, Putative new species,
- Publikační typ
- časopisecké články MeSH
Combining morphological and molecular data in an integrative approach, three new mayfly species of Epeorus (Caucasiron) are described. These include Epeorus (Caucasiron) alborzicus Hrivniak & Sroka, sp. nov. and Epeorus (Caucasiron) shargi Hrivniak & Sroka, sp. nov. from northern Iran, and Epeorus (Caucasiron) zagrosicus Hrivniak & Sroka, sp. nov. from central Iran. They are unambiguously delimited using both distance-based and likelihood-based approaches in the analyses of barcode COI sequences. Each new species is compared with other species of the subgenus and morphological diagnostic characters are provided. Based on extensive sampling of streams throughout the country, the distribution and habitat preferences of all Caucasiron species in Iran are assessed. Altogether, there are now six species recorded, among them also E. (C.) nigripilosus Sinitshenkova, 1976 is reported for the first time in Iran. Five species are distributed in the Alborz Mts. in northern Iran, one species was found in the Zagros Mts. in central Iran.
- Klíčová slova
- Caucasus, Middle East, barcoding, diversity, mayflies, taxonomy,
- Publikační typ
- časopisecké články MeSH
Using molecular dated phylogenies and biogeographic reconstructions, the species diversity, biogeography and time frame of evolution of the genus Herichthys were evaluated. In particular, we test the role of Punta del Morro (PdM) as a vicariant brake along the Mexican Transition Zone in the context of local and global time frame of cichlid diversification using several sets of calibrations. Species diversity in Herichthys is complex and the here employed dating methods suggest young age and rapid divergence for many species while species delimitation methods did not resolve these young species including both sympatric species pairs. Based on our molecular clock dating analyses, Herichthys has colonized its present distribution area significantly prior to the suggested vicariance by PdM (10-17.1 Ma vs. 5 to 7.5 Ma). The PdM constraint is in conflict with all other paleogeographic and fossil constraints including novel ones introduced in this study that are, however, congruent among each other. Our study demonstrates that any cichlid datings significantly older or younger than the bounds presented by our analyses and discussion have to be taken as highly questionable from the point of view of Middle American paleogeography and cichlid biogeography unless we allow the option that cichlid biogeography is completely independent from ecological and geological constraints.
- Klíčová slova
- Central america, Dispersal–vicariance, Extinctions, Ichthyological provinces, Molecular clocks,
- Publikační typ
- časopisecké články MeSH
Gymnogeophagus jaryi, new species, is described from Southern tributaries of the Middle Paraná basin in Misiones. It can be distinguished from all other members of the genus, except from G. australis and G. caaguazuensis, by the presence of a hyaline to grey anterior portion of the dorsal fin. Gymnogeophagus jaryi differs from G. caaguazuensis by a longer caudal peduncle, caudal fin not lyrate, central portion of scales on dorsal portion of trunk light iridescent blue and by white spots in soft portion of dorsal fin in adult males, and from G. australis by the light iridescent blue coloration of central portion of scales on the dorsal portion of trunk and tail, and by the lack of scales on the soft portion of the dorsal fin. Additionally, it can be diagnosed by the following unique combination of characters: 10-11 dorsal-fin branched rays, 27-30 E1 scales, absence of lips thickening, and, in males, by the possession of a hump in adults, caudal fin not lyrate, presence of large white spots forming transversal stripes distally and in anterior area of the dorsal fin's soft portion, central area of scales on the dorsal portion of the trunk light iridescent blue, lack of scales on the base of the dorsal fin's soft portion, absence of a conspicuous and oblique dark band from the eye to the anterior border of the head, anterior portion of dorsal fin hyaline to grey, scales of the midlateral spot each bearing a semicircular light blue blotch, head hump starting at the horizontal through the eyes, concave anterior profile in lateral view, base of unpaired fins yellow, and whitish hyaline spots on caudal fin. The new species, based on mtDNA phylogeny, is the sister species of G. caaguazuensis from the Paraguay basin and is closely related to G. australis.
- MeSH
- cichlidy anatomie a histologie klasifikace fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Uruguay MeSH
Coccomyxa is a genus of unicellular green algae of the class Trebouxiophyceae, well known for its cosmopolitan distribution and great ecological amplitude. The taxonomy of this genus has long been problematic, due to reliance on badly-defined and environmentally variable morphological characters. In this study, based on the discovery of a new species from an extreme habitat, we reassess species circumscription in Coccomyxa, a unicellular genus of the class Trebouxiophyceae, using a combination of ecological and DNA sequence data (analyzed with three different methods of algorithmic species delineation). Our results are compared with those of a recent integrative study of Darienko and colleagues that reassessed the taxonomy of Coccomyxa, recognizing 7 species in the genus. Expanding the dataset from 43 to 61 sequences (SSU + ITS rDNA) resulted in a different delimitation, supporting the recognition of a higher number of species (24 to 27 depending on the analysis used, with the 27-species scenario receiving the strongest support). Among these, C. melkonianii sp. nov. is described from material isolated from a river highly polluted by heavy metals (Rio Irvi, Sardinia, Italy). Analyses performed on ecological characters detected a significant phylogenetic signal in six different characters. We conclude that the 27-species scenario is presently the most realistic for Coccomyxa and we suggest that well-supported lineages distinguishable by ecological preferences should be recognized as different species in this genus. We also recommend that for microbial lineages in which the overall diversity is unknown and taxon sampling is sparse, as is often the case for green microalgae, the results of analyses for algorithmic DNA-based species delimitation should be interpreted with extreme caution.
- MeSH
- Chlorophyta klasifikace genetika ultrastruktura MeSH
- DNA rostlinná genetika MeSH
- fylogeneze MeSH
- mezerníky ribozomální DNA genetika MeSH
- mikrořasy klasifikace genetika ultrastruktura MeSH
- molekulární evoluce MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- mezerníky ribozomální DNA MeSH
In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity.
- Klíčová slova
- Coleoptera, Illumina MiSeq, biodiversity, bulk samples, community ecology, metagenome skimming, mitochondrial genomes, mitochondrial metagenomics, phylogeny, tree-of-life,
- MeSH
- brouci genetika MeSH
- deštný prales MeSH
- frekvence genu MeSH
- fylogeneze MeSH
- genetická variace MeSH
- genom mitochondriální MeSH
- hmyzí geny MeSH
- kontigové mapování MeSH
- metagenom MeSH
- mitochondrie genetika MeSH
- sekvenční analýza DNA MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Borneo MeSH
Species distributed across vast continental areas and across major biomes provide unique model systems for studies of biotic diversification, yet also constitute daunting financial, logistic and political challenges for data collection across such regions. The tree frog Dendropsophus minutus (Anura: Hylidae) is a nominal species, continentally distributed in South America, that may represent a complex of multiple species, each with a more limited distribution. To understand the spatial pattern of molecular diversity throughout the range of this species complex, we obtained DNA sequence data from two mitochondrial genes, cytochrome oxidase I (COI) and the 16S rhibosomal gene (16S) for 407 samples of D. minutus and closely related species distributed across eleven countries, effectively comprising the entire range of the group. We performed phylogenetic and spatially explicit phylogeographic analyses to assess the genetic structure of lineages and infer ancestral areas. We found 43 statistically supported, deep mitochondrial lineages, several of which may represent currently unrecognized distinct species. One major clade, containing 25 divergent lineages, includes samples from the type locality of D. minutus. We defined that clade as the D. minutus complex. The remaining lineages together with the D. minutus complex constitute the D. minutus species group. Historical analyses support an Amazonian origin for the D. minutus species group with a subsequent dispersal to eastern Brazil where the D. minutus complex originated. According to our dataset, a total of eight mtDNA lineages have ranges >100,000 km2. One of them occupies an area of almost one million km2 encompassing multiple biomes. Our results, at a spatial scale and resolution unprecedented for a Neotropical vertebrate, confirm that widespread amphibian species occur in lowland South America, yet at the same time a large proportion of cryptic diversity still remains to be discovered.
- MeSH
- biodiverzita * MeSH
- fylogeografie MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- respirační komplex IV genetika MeSH
- žáby genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- mitochondriální DNA MeSH
- respirační komplex IV MeSH