Nejvíce citovaný článek - PubMed ID 21646222
The establishment of Arabidopsis as the most important plant model has also brought other crucifer species into the spotlight of comparative research. While the genus Capsella has become a prominent crucifer model system, its closest relative has been overlooked. The unispecific genus Catolobus is native to temperate Eurasian woodlands, from eastern Europe to the Russian Far East. Here, we analyzed chromosome number, genome structure, intraspecific genetic variation, and habitat suitability of Catolobus pendulus throughout its range. Unexpectedly, all analyzed populations were hypotetraploid (2n = 30, ~330 Mb). Comparative cytogenomic analysis revealed that the Catolobus genome arose by a whole-genome duplication in a diploid genome resembling Ancestral Crucifer Karyotype (ACK, n = 8). In contrast to the much younger Capsella allotetraploid genomes, the presumably autotetraploid Catolobus genome (2n = 32) arose early after the Catolobus/Capsella divergence. Since its origin, the tetraploid Catolobus genome has undergone chromosomal rediploidization, including a reduction in chromosome number from 2n = 32 to 2n = 30. Diploidization occurred through end-to-end chromosome fusion and other chromosomal rearrangements affecting a total of six of 16 ancestral chromosomes. The hypotetraploid Catolobus cytotype expanded toward its present range, accompanied by some longitudinal genetic differentiation. The sister relationship between Catolobus and Capsella allows comparative studies of tetraploid genomes of contrasting ages and different degrees of genome diploidization.
- Klíčová slova
- Arabidopsis-related model systems, Brassicaceae, Cruciferae, Hyb-Seq, chromosome painting, diploidization, polyploidy, whole-genome duplication (WGD),
- Publikační typ
- časopisecké články MeSH
Based on recent achievements in phylogenetic studies of the Brassicaceae, a novel infrafamilial classification is proposed that includes major improvements at the subfamilial and supertribal levels. Herein, the family is subdivided into two subfamilies, Aethionemoideae (subfam. nov.) and Brassicoideae. The Brassicoideae, with 57 of the 58 tribes of Brassicaceae, are further partitioned into five supertribes, including the previously recognized Brassicodae and the newly established Arabodae, Camelinodae, Heliophilodae, and Hesperodae. Additional tribus-level contributions include descriptions of the newly recognized Arabidopsideae, Asperuginoideae, Hemilophieae, Schrenkielleae, and resurrection of the Chamireae and Subularieae. Further detailed comments on 17 tribes in need of clarifications are provided.
- Klíčová slova
- classification, subfamily, supertribe, taxonomy, tribe,
- Publikační typ
- časopisecké články MeSH
The Balkan Peninsula played an important role in the evolution of many Mediterranean plants and served as a major source for post-Pleistocene colonisation of central and northern Europe. Its complex geo-climatic history and environmental heterogeneity significantly influenced spatiotemporal diversification and resulted in intricate phylogeographic patterns. To explore the evolutionary dynamics and phylogeographic patterns within the widespread eastern Mediterranean and central European species Aurinia saxatilis, we used a combination of phylogenomic (restriction-site associated DNA sequencing, RADseq) and phylogenetic (sequences of the plastid marker ndhF) data as well as species distribution models generated for the present and the Last Glacial Maximum (LGM). The inferred phylogenies retrieved three main geographically distinct lineages. The southern lineage is restricted to the eastern Mediterranean, where it is distributed throughout the Aegean area, the southern Balkan Peninsula, and the southern Apennine Peninsula, and corresponds to the species main distribution area during the LGM. The eastern lineage extends from the eastern Balkan Peninsula over the Carpathians to central Europe, while the central lineage occupies the central Balkan Peninsula. Molecular dating places the divergence among all the three lineages to the early to middle Pleistocene, indicating their long-term independent evolutionary trajectories. Our data revealed an early divergence and stable in situ persistence of the southernmost, eastern Mediterranean lineage, whereas the mainland, south-east European lineages experienced more complex and turbulent evolutionary dynamics triggered by Pleistocene climatic oscillations. Our data also support the existence of multiple glacial refugia in southeast Europe and highlight the central Balkan Peninsula not only as a cradle of lineage diversifications but also as a source of lineage dispersal. Finally, the extant genetic variation within A. saxatilis is congruent with the taxonomic separation of peripatric A. saxatilis subsp. saxatilis and A. saxatilis subsp. orientalis, whereas the taxonomic status of A. saxatilis subsp. megalocarpa remains doubtful.
- Klíčová slova
- Aurinia saxatilis, RAD sequencing, demographic modelling, glacial refugia, ndhF, species distribution modelling,
- Publikační typ
- časopisecké články MeSH
Angiosperms have become the dominant terrestrial plant group by diversifying for ~145 million years into a broad range of environments. During the course of evolution, numerous morphological innovations arose, often preceded by whole genome duplications (WGD). The mustard family (Brassicaceae), a successful angiosperm clade with ~4000 species, has been diversifying into many evolutionary lineages for more than 30 million years. Here we develop a species inventory, analyze morphological variation, and present a maternal, plastome-based genus-level phylogeny. We show that increased morphological disparity, despite an apparent absence of clade-specific morphological innovations, is found in tribes with WGDs or diversification rate shifts. Both are important processes in Brassicaceae, resulting in an overall high net diversification rate. Character states show frequent and independent gain and loss, and form varying combinations. Therefore, Brassicaceae pave the way to concepts of phylogenetic genome-wide association studies to analyze the evolution of morphological form and function.
Complexes of diploid and polyploid species have formed frequently during the evolution of land plants. In false flax (Camelina sativa), an important hexaploid oilseed crop closely related to Arabidopsis (Arabidopsis thaliana), the putative parental species as well as the origin of other Camelina species remained unknown. By using bacterial artificial chromosome-based chromosome painting, genomic in situ hybridization, and multi-gene phylogenetics, we aimed to elucidate the origin and evolution of the polyploid complex. Genomes of diploid camelinas (Camelina hispida, n = 7; Camelina laxa, n = 6; and Camelina neglecta, n = 6) originated from an ancestral n = 7 genome. The allotetraploid genome of Camelina rumelica (n = 13, N6H) arose from hybridization between diploids related to C. neglecta (n = 6, N6) and C. hispida (n = 7, H), and the N subgenome has undergone a substantial post-polyploid fractionation. The allohexaploid genomes of C. sativa and Camelina microcarpa (n = 20, N6N7H) originated through hybridization between an auto-allotetraploid C. neglecta-like genome (n = 13, N6N7) and C. hispida (n = 7, H), and the three subgenomes have remained stable overall since the genome merger. Remarkably, the ancestral and diploid Camelina genomes were shaped by complex chromosomal rearrangements, resembling those associated with human disorders and resulting in the origin of genome-specific shattered chromosomes.plantcell;31/11/2596/FX1F1fx1.
- MeSH
- Arabidopsis genetika MeSH
- Brassicaceae klasifikace genetika MeSH
- chromothripsis * MeSH
- chromozomy rostlin MeSH
- diploidie * MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- hybridizace genetická MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Most crucifer species (Brassicaceae) have small nuclear genomes (mean 1C-value 617 Mb). The species with the largest genomes occur within the monophyletic Hesperis clade (Mandáková et al., Plant Physiology174: 2062-2071; also known as Clade E or Lineage III). Whereas most chromosome numbers in the clade are 6 or 7, monoploid genome sizes vary 16-fold (256-4264 Mb). To get an insight into genome size evolution in the Hesperis clade (~350 species in ~48 genera), we aimed to identify, quantify and localize in situ the repeats from which these genomes are built. We analysed nuclear repeatomes in seven species, covering the phylogenetic and genome size breadth of the clade, by low-pass whole-genome sequencing. METHODS: Genome size was estimated by flow cytometry. Genomic DNA was sequenced on an Illumina sequencer and DNA repeats were identified and quantified using RepeatExplorer; the most abundant repeats were localized on chromosomes by fluorescence in situ hybridization. To evaluate the feasibility of bacterial artificial chromosome (BAC)-based comparative chromosome painting in Hesperis-clade species, BACs of arabidopsis were used as painting probes. KEY RESULTS: Most biennial and perennial species of the Hesperis clade possess unusually large nuclear genomes due to the proliferation of long terminal repeat retrotransposons. The prevalent genome expansion was rarely, but repeatedly, counteracted by purging of transposable elements in ephemeral and annual species. CONCLUSIONS: The most common ancestor of the Hesperis clade has experienced genome upsizing due to transposable element amplification. Further genome size increases, dominating diversification of all Hesperis-clade tribes, contrast with the overall stability of chromosome numbers. In some subclades and species genome downsizing occurred, presumably as an adaptive transition to an annual life cycle. The amplification versus purging of transposable elements and tandem repeats impacted the chromosomal architecture of the Hesperis-clade species.
- Klíčová slova
- Bunias, Hesperis, Matthiola, Brassicaceae, Genome size evolution, Lineage III, chromosome organization, interstitial telomeric repeats (ITRs), repetitive DNA, retrotransposons, tandem repeats,
- MeSH
- Brassicaceae * MeSH
- délka genomu MeSH
- fylogeneze MeSH
- genom rostlinný * MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární evoluce MeSH
- proliferace buněk MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Habitats with alkaline edaphic substrates are often associated with plant speciation and diversification. The tribe Alysseae, in the family Brassicaceae, epitomizes this evolutionary trend. In this lineage, some genera, like Hormathophylla, can serve as a good case for testing the evolutionary framework. This genus is centered in the western Mediterranean. It grows on different substrates, but mostly on alkaline soils. It has been suggested that diversification in many lineages of the tribe Alysseae and in the genus Hormathophylla is linked to a tolerance for high levels of Mg+2 in xeric environments. In this study, we investigated the controversial phylogenetic placement of Hormathophylla in the tribe, the generic limits and the evolutionary relationships between the species using ribosomal and plastid DNA sequences. We also examined the putative association between the evolution of different ploidy levels, trichome morphology and the type of substrates. Our analyses demonstrated the monophyly of the genus Hormathophylla including all previously described species. Nuclear sequences revealed two lineages that differ in basic chromosome numbers (x = 7 and x = 8 or derived 11, 15) and in their trichome morphology. Contrasting results with plastid genes indicates more complex relationships between these two lineages involving recent hybridization processes. We also found an association between chloroplast haplotypes and substrate, especially in populations growing on dolomites. Finally, our dated phylogeny demonstrates that the origin of the genus took place in the mid-Miocene, during the establishment of temporal land bridges between the Tethys and Paratethys seas, with a later diversification during the upper Pliocene.
- MeSH
- alkálie chemie MeSH
- Bayesova věta MeSH
- Brassicaceae genetika ultrastruktura MeSH
- buněčné jádro genetika MeSH
- časové faktory MeSH
- chromozomy rostlin genetika MeSH
- druhová specificita MeSH
- fylogeneze * MeSH
- fylogeografie MeSH
- genetická variace MeSH
- haplotypy genetika MeSH
- hořčík chemie MeSH
- plastidy genetika MeSH
- ploidie MeSH
- pravděpodobnostní funkce MeSH
- půda chemie MeSH
- ribozomy genetika MeSH
- sekvence nukleotidů MeSH
- trichomy ultrastruktura MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Středomoří MeSH
- Názvy látek
- alkálie MeSH
- hořčík MeSH
- půda MeSH
Clade E, or the Hesperis clade, is one of the major Brassicaceae (Crucifereae) clades, comprising some 48 genera and 351 species classified into seven tribes and is distributed predominantly across arid and montane regions of Asia. Several taxa have socioeconomic significance, being important ornamental but also weedy and invasive species. From the comparative genomic perspective, the clade is noteworthy as it harbors species with the largest crucifer genomes but low numbers of chromosomes (n = 5-7). By applying comparative cytogenetic analysis and whole-chloroplast phylogenetics, we constructed, to our knowledge, the first partial and complete cytogenetic maps for selected representatives of clade E tribes and investigated their relationships in a family-wide context. The Hesperis clade is a well-supported monophyletic lineage comprising seven tribes: Anchonieae, Buniadeae, Chorisporeae, Dontostemoneae, Euclidieae, Hesperideae, and Shehbazieae. The clade diverged from other Brassicaceae crown-group clades during the Oligocene, followed by subsequent Miocene tribal diversifications in central/southwestern Asia. The inferred ancestral karyotype of clade E (CEK; n = 7) originated from an older n = 8 genome, which also was the purported progenitor of tribe Arabideae (KAA genome). In most taxa of clade E, the seven linkage groups of CEK either remained conserved (Chorisporeae) or were reshuffled by chromosomal translocations (Euclidieae). In 50% of Anchonieae and Hesperideae species, the CEK genome has undergone descending dysploidy toward n = 6 (-5). These genomic data elucidate early genome evolution in Brassicaceae and pave the way for future whole-genome sequencing and assembly efforts in this as yet genomically neglected group of crucifer plants.
- MeSH
- Brassicaceae genetika MeSH
- fylogeneze * MeSH
- genom rostlinný * MeSH
- karyotyp MeSH
- molekulární evoluce * MeSH
- Publikační typ
- časopisecké články MeSH
The Brassicaceae include several major crop plants and numerous important model species in comparative evolutionary research such as Arabidopsis, Brassica, Boechera, Thellungiella, and Arabis species. As any evolutionary hypothesis needs to be placed in a temporal context, reliably dated major splits within the evolution of Brassicaceae are essential. We present a comprehensive time-calibrated framework with important divergence time estimates based on whole-chloroplast sequence data for 29 Brassicaceae species. Diversification of the Brassicaceae crown group started at the Eocene-to-Oligocene transition. Subsequent major evolutionary splits are dated to ∼20 million years ago, coinciding with the Oligocene-to-Miocene transition, with increasing drought and aridity and transient glaciation events. The age of the Arabidopsis thaliana crown group is 6 million years ago, at the Miocene and Pliocene border. The overall species richness of the family is well explained by high levels of neopolyploidy (43% in total), but this trend is neither directly associated with an increase in genome size nor is there a general lineage-specific constraint. Our results highlight polyploidization as an important source for generating new evolutionary lineages adapted to changing environments. We conclude that species radiation, paralleled by high levels of neopolyploidization, follows genome size decrease, stabilization, and genetic diploidization.
- MeSH
- Arabidopsis genetika fyziologie MeSH
- Brassica genetika fyziologie MeSH
- Brassicaceae genetika fyziologie MeSH
- fylogeneze MeSH
- genom chloroplastový genetika MeSH
- genom rostlinný genetika MeSH
- molekulární evoluce * MeSH
- polyploidie MeSH
- sekvenční analýza DNA MeSH
- vznik druhů (genetika) MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Karyotype evolution in species with identical chromosome number but belonging to distinct phylogenetic clades is a long-standing question of plant biology, intractable by conventional cytogenetic techniques. Here, we apply comparative chromosome painting (CCP) to reconstruct karyotype evolution in eight species with x=7 (2n=14, 28) chromosomes from six Brassicaceae tribes. CCP data allowed us to reconstruct an ancestral Proto-Calepineae Karyotype (PCK; n=7) shared by all x=7 species analyzed. The PCK has been preserved in the tribes Calepineae, Conringieae, and Noccaeeae, whereas karyotypes of Eutremeae, Isatideae, and Sisymbrieae are characterized by an additional translocation. The inferred chromosomal phylogeny provided compelling evidence for a monophyletic origin of the x=7 tribes. Moreover, chromosomal data along with previously published gene phylogenies strongly suggest the PCK to represent an ancestral karyotype of the tribe Brassiceae prior to its tribe-specific whole-genome triplication. As the PCK shares five chromosomes and conserved associations of genomic blocks with the putative Ancestral Crucifer Karyotype (n=8) of crucifer Lineage I, we propose that both karyotypes descended from a common ancestor. A tentative origin of the PCK via chromosome number reduction from n=8 to n=7 is outlined. Comparative chromosome maps of two important model species, Noccaea caerulescens and Thellungiella halophila, and complete karyotypes of two purported autotetraploid Calepineae species (2n=4x=28) were reconstructed by CCP.
- MeSH
- Brassicaceae genetika MeSH
- chromozomy rostlin * MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- heterochromatin MeSH
- karyotypizace MeSH
- malování chromozomů MeSH
- molekulární evoluce * MeSH
- translokace genetická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH