Nejvíce citovaný článek - PubMed ID 22643969
Can Satraplatin be hydrated before the reduction process occurs? The DFT computational study
Based on experimental work, 12 half-sandwich organoruthenium(II) complexes with p-cymene and various substituted β-diketonates (acac) modified by several functional groups were explored. These complexes were optimized at the B3PW91/6-31 + G(d)/PCM/UFF computational level with the Ru atom described by Stuttgart pseudopotentials. The electron density analysis was performed using the B3LYP/ 6-311++G(2df,2pd)/DPCM/scaled-UAKS model. Electrostatic and averaged local ionization potential were explored and extremes on 0.001 e/a.u.3 isodensity surfaces discussed. Natural population analysis partial charges and electron densities in bond critical point of the key Ru(II) coordination bonds were determined. There was a clear correlation between the results obtained and experimentally known anticancer descriptors. Graphical abstract Top Average local ionization potential (ALIP) of half-sandwich organoruthenium(II) β-diketonate complex, bottom IC 50 of b-series for ovarian cancer and Ru-P distances (in Å).
- Klíčová slova
- Anticancer Ru(II) complexes, DFT calculations, Half-sandwich complexes,
- Publikační typ
- časopisecké články MeSH
In the study behavior of molecular electrostatic potential, averaged local ionization energy, and reaction electronic flux along the reaction coordinate of hydration process of three representative Ru(II) and Pt(II) complexes were explored using both post-HF and DFT quantum chemical approximations. Previously determined reaction mechanisms were explored by more detailed insight into changes of electronic properties using ωB97XD functional and MP2 method with 6-311++G(2df,2pd) basis set and CCSD/6-31(+)G(d,p) approach. The dependences of all examined properties on reaction coordinate give more detailed understanding of the hydration process.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH