Nejvíce citovaný článek - PubMed ID 23845962
Chenopodium ficifolium is a close diploid relative of the tetraploid crop Chenopodium quinoa. Owing to its reproducible germination and seedling development, it becomes a promising model for studying floral induction, providing a basis for the comparison with C. quinoa. Two C. ficifolium genotypes differ in photoperiodic requirement: C. ficifolium 283 accelerates flowering under long days, whereas C. ficifolium 459 flowers earlier under short days. This study conducted a comprehensive transcriptomic and hormonomic analysis of floral induction in the long-day C. ficifolium 283 and compared the findings to previous experiments with the short-day C. ficifolium. Phytohormone concentrations and gene expression profiles during floral induction were largely similar between the two genotypes. However, a subset of genes exhibited contrasting expression patterns, aligning with the genotypes' differing photoperiodic requirements. These genes, predominantly homologs of flowering-related genes in Arabidopsis thaliana, were activated under long days in C. ficifolium 283 and under short days in C. ficifolium 459. Notably, the contrasting expression of the FLOWERING LOCUS T-LIKE 2-1 gene, which was previously shown to induce precocious flowering in A. thaliana, confirmed its role as a floral activator, despite its low expression levels.
- Klíčová slova
- Flowering, genes with contrasting expression trends, long-day Chenopodium ficifolium, phytohormones, transcriptome,
- MeSH
- Chenopodium * genetika MeSH
- fotoperioda MeSH
- genotyp MeSH
- květy * genetika růst a vývoj MeSH
- regulace genové exprese u rostlin * MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- regulátory růstu rostlin MeSH
- rostlinné proteiny MeSH
Bioluminescence is the production of visible light by living organisms. It occurs through the oxidation of luciferin substrates catalysed by luciferase enzymes. Auxiliary proteins, such as fluorescent proteins and luciferin-binding proteins, can modify the light emitted wavelength or stabilize reactive luciferin molecules, respectively. Additionally, calcium ions are crucial for the luminescence across various species. Despite the large phylogenetic distribution of bioluminescent organisms, only a few systems have been comprehensively studied. Notably, cnidarian species of the Renilla genus utilize a coelenterazine-dependent luciferase, a calcium-dependent coelenterazine-binding protein and a green fluorescent protein. We investigated the bioluminescence of three sea pen species: Pennatula phosphorea, Anthoptilum murrayi and Funiculina quadrangularis (Pennatuloidea, Anthozoa). Their light-emission spectra reveal peaks at 510, 513 and 485 nm, respectively. A coelenterazine-based reaction was demonstrated in all three species. Using transcriptome analyses, we identified transcripts coding for luciferases, green fluorescent proteins and coelenterazine-binding proteins for P. phosphorea and A. murrayi. Immunodetection confirmed the expression of luciferase in P. phosphorea and F. quadrangularis. We also expressed recombinant luciferase of A. murrayi, confirming its activity. We highlighted the role of calcium ions in bioluminescence, possibly associated with the mechanism of substrate release at the level of coelenterazine-binding proteins. The study proposes a model for anthozoan bioluminescence, offering new avenues for future ecological and functional research on these luminous organisms.
- Klíčová slova
- Anthoptilidae, Funiculidae, Pennatulidae, bioluminescence, coelenterazine, luciferase, luciferin-binding protein, luminous system,
- MeSH
- fylogeneze MeSH
- imidazoly metabolismus MeSH
- korálnatci * genetika metabolismus MeSH
- luciferasy metabolismus genetika MeSH
- luminescentní proteiny metabolismus genetika MeSH
- luminiscence MeSH
- luminiscenční měření metody MeSH
- pyraziny metabolismus MeSH
- stanovení celkové genové exprese * MeSH
- transkriptom * MeSH
- zelené fluorescenční proteiny metabolismus genetika MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- coelenterazine MeSH Prohlížeč
- imidazoly MeSH
- luciferasy MeSH
- luminescentní proteiny MeSH
- pyraziny MeSH
- zelené fluorescenční proteiny MeSH
Over the last decade, considerable progress has been made in unraveling RNA virus diversity. This has contributed to our understanding of the evolution of these viruses, which include emerging zoonotic human pathogens. Current success has been greatly facilitated by the development of next-generation sequencing platforms instrumental for meta-transcriptomic studies. However, due to the rapid evolution of RNA viruses, there are numerous "blind spots" waiting to be explored; one of those is the RNA virome of unicellular eukaryotes. Here, we present the pipeline, which has been successfully used to characterize various types of RNA viruses, including Leishbuviridae (Bunyaviricetes, Hareavirales) in the parasitic flagellates of the family Trypanosomatidae. The pipeline relies on axenic in vitro cell culture and double-stranded RNA enrichment, followed by direct RNA-sequencing. A detailed procedure description starting from the initial total RNA preparation to the final assembly of the viral segments is provided.
- Klíčová slova
- Leishbuviridae, NGS, Protists, RNA isolation, Trypanosomatidae, Virus Discovery, dsRNA,
- MeSH
- dvouvláknová RNA genetika MeSH
- genom virový MeSH
- RNA virová genetika MeSH
- RNA-viry genetika klasifikace MeSH
- sekvenční analýza RNA metody MeSH
- Trypanosomatina * genetika MeSH
- vysoce účinné nukleotidové sekvenování * metody MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dvouvláknová RNA MeSH
- RNA virová MeSH
Our understanding of the vertebrate immune system is dominated by a few model organisms such as mice. This use of a few model systems is reasonable if major features of the immune systems evolve slowly and are conserved across most vertebrates, but may be problematic if there is substantial macroevolutionary change in immune responses. Here, we present a test of the macroevolutionary stability, across 15 species of jawed fishes, of the transcriptomic response to a standardized immune challenge. Intraperitoneal injection of an immune adjuvant (alum) induces a fibrosis response in nearly all jawed fishes, which in some species contributes to anti-helminth resistance. Despite this conserved phenotypic response, the underlying transcriptomic response is highly inconsistent across species. Although many gene orthogroups exhibit differential expression between saline versus alum-injected fish in at least one species, few orthogroups exhibit consistent differential expression across species. This result suggests that although the phenotypic response to alum (fibrosis) is highly conserved, the underlying gene regulatory architecture is very flexible and cannot readily be extrapolated from any one species to fishes (or vertebrates) more broadly. The vertebrate immune response is remarkably changeable over macroevolutionary time, requiring a diversity of model organisms to describe effectively.
- Klíčová slova
- evolutionary immunology, fibrosis, transcriptome,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
UNLABELLED: Transmission of genetic material from one generation to the next is a fundamental feature of all living cells. In eukaryotes, a macromolecular complex called the kinetochore plays crucial roles during chromosome segregation by linking chromosomes to spindle microtubules. Little is known about this process in evolutionarily diverse protists. Within the supergroup Discoba, Euglenozoa forms a speciose group of unicellular flagellates-kinetoplastids, euglenids, and diplonemids. Kinetoplastids have an unconventional kinetochore system, while euglenids have subunits that are conserved among most eukaryotes. For diplonemids, a group of extremely diverse and abundant marine flagellates, it remains unclear what kind of kinetochores are present. Here, we employed deep homology detection protocols using profile-versus-profile Hidden Markov Model searches and AlphaFold-based structural comparisons to detect homologies that might have been previously missed. Interestingly, we still could not detect orthologs for most of the kinetoplastid or canonical kinetochore subunits with few exceptions including a putative centromere-specific histone H3 variant (cenH3/CENP-A), the spindle checkpoint protein Mad2, the chromosomal passenger complex members Aurora and INCENP, and broadly conserved proteins like CLK kinase and the meiotic synaptonemal complex proteins SYCP2/3 that also function at kinetoplastid kinetochores. We examined the localization of five candidate kinetochore-associated proteins in the model diplonemid, Paradiplonema papillatum. PpCENP-A shows discrete dots in the nucleus, implying that it is likely a kinetochore component. PpMad2, PpCLKKKT10/19, PpSYCP2L1KKT17/18, and PpINCENP reside in the nucleus, but no clear kinetochore localization was observed. Altogether, these results point to the possibility that diplonemids evolved a hitherto unknown type of kinetochore system. IMPORTANCE: A macromolecular assembly called the kinetochore is essential for the segregation of genetic material during eukaryotic cell division. Therefore, characterization of kinetochores across species is essential for understanding the mechanisms involved in this key process across the eukaryotic tree of life. In particular, little is known about kinetochores in divergent protists such as Euglenozoa, a group of unicellular flagellates that includes kinetoplastids, euglenids, and diplonemids, the latter being a highly diverse and abundant component of marine plankton. While kinetoplastids have an unconventional kinetochore system and euglenids have a canonical one similar to traditional model eukaryotes, preliminary searches detected neither unconventional nor canonical kinetochore components in diplonemids. Here, we employed state-of-the-art deep homology detection protocols but still could not detect orthologs for the bulk of kinetoplastid-specific nor canonical kinetochore proteins in diplonemids except for a putative centromere-specific histone H3 variant. Our results suggest that diplonemids evolved kinetochores that do not resemble previously known ones.
- Klíčová slova
- Diplonemea, Kinetoplastea, Paradiplonema, cell division, cenH3/CENP-A, kinetochore,
- MeSH
- Euglenozoa * genetika metabolismus MeSH
- fylogeneze MeSH
- kinetochory * metabolismus MeSH
- protozoální proteiny metabolismus genetika MeSH
- segregace chromozomů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protozoální proteiny MeSH
The early evolution of eukaryotes and their adaptations to low-oxygen environments are fascinating open questions in biology. Genome-scale data from novel eukaryotes, and particularly from free-living lineages, are the key to answering these questions. The Parabasalia are a major group of anaerobic eukaryotes that form the most speciose lineage of Metamonada. The most well-studied are parasitic parabasalids, including Trichomonas vaginalis and Tritrichomonas foetus, but very little genome-scale data are available for free-living members of the group. Here, we sequenced the transcriptome of Pseudotrichomonas keilini, a free-living parabasalian. Comparative genomic analysis indicated that P. keilini possesses a metabolism and gene complement that are in many respects similar to its parasitic relative T. vaginalis and that in the time since their most recent common ancestor, it is the T. vaginalis lineage that has experienced more genomic change, likely due to the transition to a parasitic lifestyle. Features shared between P. keilini and T. vaginalis include a hydrogenosome (anaerobic mitochondrial homolog) that we predict to function much as in T. vaginalis and a complete glycolytic pathway that is likely to represent one of the primary means by which P. keilini obtains ATP. Phylogenomic analysis indicates that P. keilini branches within a clade of endobiotic parabasalids, consistent with the hypothesis that different parabasalid lineages evolved toward parasitic or free-living lifestyles from an endobiotic, anaerobic, or microaerophilic common ancestor.
- Klíčová slova
- anaerobic eukaryotes, eukaryotic evolution, hydrogenosome, protist transcriptome,
- MeSH
- anaerobióza MeSH
- biologická evoluce MeSH
- fylogeneze * MeSH
- molekulární evoluce * MeSH
- Parabasalidea genetika MeSH
- transkriptom * MeSH
- Publikační typ
- časopisecké články MeSH
Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae. Screening a novel isolate of L. braziliensis, we revealed that it possesses not a toti-, but a bunyavirus of the family Leishbuviridae. To the best of our knowledge, this is a very first discovery of a bunyavirus infecting a representative of the Leishmania subgenus Viannia. We suggest that these viruses may serve as potential factors of virulence in American leishmaniasis and encourage researchers to test leishmanial strains for the presence of not only LRVs, but also other RNA viruses.
- MeSH
- Bunyaviridae klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- Leishmania braziliensis * genetika izolace a purifikace MeSH
- lidé MeSH
- Orthobunyavirus genetika klasifikace izolace a purifikace fyziologie MeSH
- RNA-viry genetika klasifikace izolace a purifikace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
A dataset of 40 assembled and annotated transcriptomes from 34 different species sampled from phylogenetically diverse parts of the flowering plant genus Silene (Caryophyllaceae) and the related genera Agrostemma, Atocion, Eudianthe, Heliosperma, Petrocoptis and Viscaria. RNA extracted from roots, stems, leaves, buds and flowers were sequenced using paired end reads on the Illumina Hiseq platform. A total of 716 million raw reads were produced and assembled into 2.67 million isogroups ("genes"). Contigs from all samples were annotated using UniProt/SwissProt and assigned with GO-terms. A total of 974274 annotations were made (per sample average 24357, stdev 7034), giving an annotation proportion of 37% (per sample average 39%, stdev 9.75%). 741087 of the annotations had taxonomic identities within Magnoliopsida (per sample average 18527, stdev 3931), resulting in assignment of 4519488 GO-terms (per sample average 112987, stdev 22536). The data set can be further utilized for biological research and phylogenetic studies, evolutionary questions, functional analyses of genes, polyploidy as well as for marker development.
- Klíčová slova
- Assembly, Functional-annotation, Genomics, Nucleotide, Phylogenetics, RNA-transcripts, Sileneae,
- Publikační typ
- časopisecké články MeSH
The genomes of many plants, animals, and fungi frequently comprise dispensable B chromosomes that rely upon various chromosomal drive mechanisms to counteract the tendency of non-essential genetic elements to be purged over time. The B chromosome of rye - a model system for nearly a century - undergoes targeted nondisjunction during first pollen mitosis, favouring segregation into the generative nucleus, thus increasing their numbers over generations. However, the genetic mechanisms underlying this process are poorly understood. Here, using a newly-assembled, ~430 Mb-long rye B chromosome pseudomolecule, we identify five candidate genes whose role as trans-acting moderators of the chromosomal drive is supported by karyotyping, chromosome drive analysis and comparative RNA-seq. Among them, we identify DCR28, coding a microtubule-associated protein related to cell division, and detect this gene also in the B chromosome of Aegilops speltoides. The DCR28 gene family is neo-functionalised and serially-duplicated with 15 B chromosome-located copies that are uniquely highly expressed in the first pollen mitosis of rye.
- MeSH
- Aegilops genetika metabolismus MeSH
- chromozomy rostlin * genetika MeSH
- karyotypizace MeSH
- mitóza * genetika MeSH
- nondisjunkce genetická MeSH
- pyl genetika MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné geny MeSH
- rostlinné proteiny genetika metabolismus MeSH
- žito * genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- rostlinné proteiny MeSH
Complete plastid loss seems to be very rare among secondarily non-photosynthetic eukaryotes. Leukarachnion sp. PRA-24, an amoeboid colourless protist related to the photosynthetic algal class Synchromophyceae (Ochrophyta), is a candidate for such a case based on a previous investigation by transmission electron microscopy. Here, we characterize this organism in further detail and describe it as Leucomyxa plasmidifera gen. et sp. nov., additionally demonstrating it is the first known representative of a broader clade of non-photosynthetic ochrophytes. We recovered its complete plastid genome, exhibiting a reduced gene set similar to plastomes of other non-photosynthetic ochrophytes, yet being even more extreme in sequence divergence. Identification of components of the plastid protein import machinery in the L. plasmidifera transcriptome assembly corroborated that the organism possesses a cryptic plastid organelle. According to our bioinformatic reconstruction, the plastid contains a unique combination of biosynthetic pathways producing haem, a folate precursor and tocotrienols. As another twist to its organellar biology, L. plasmidifera turned out to contain an unusual long insertion in its mitogenome related to a newly discovered mitochondrial plasmid exhibiting unprecedented features in terms of its size and coding capacity. Combined, our work uncovered further striking outcomes of the evolutionary course of semiautonomous organelles in protists.
- Klíčová slova
- Leukarachnion, mitochondrial plasmids, non-photosynthetic plastid, plastid evolution, plastid genome, stramenopiles,
- MeSH
- fylogeneze * MeSH
- genom mitochondriální MeSH
- genom plastidový * MeSH
- mitochondrie genetika metabolismus MeSH
- molekulární evoluce MeSH
- plastidy * genetika metabolismus MeSH
- plazmidy * genetika MeSH
- Publikační typ
- časopisecké články MeSH