Most cited article - PubMed ID 24557733
Anisotropic structures of some microorganisms studied by polarization microscopy
A simultaneous application of negative phase contrast and polarization microscopy was used to study the internal structure of microbial cells. Negative phase contrast allowed us to display the fine cell structures with a refractive index of light approaching that of the environment, e.g., the cytoplasm, and converted an invisible phase image to a visible amplitude one. In the polarizing microscope, cross-polarizing filters, together with first-order quartz compensator and a turntable, showed maximum birefringence of individual structures. Material containing algae was collected in ponds in the villages Sýkořice and Zbečno (Protected Landscape Area Křivoklátsko). Objects were studied in a laboratory microscope (Carl Zeiss Jena, type NfpK), equipped with a basic body In Ph 160 with an exchangeable module Ph, LOMO St. Petersburg turntable mounted on a centering holder of our own construction and a Nikon D 70 digital SLR camera. Anisotropic granules were found only in the members of two orders of algae (Euglenales, Euglenophyceae and Chlorococcales, Chlorophyceae). They always showed strong birefringence and differed in both number and size. An important finding concerned thin pellicles in genus Euglena (Euglenales, Euglenophyceae) which exhibited weak birefringence. In genus Pediastrum (Chlorococcales, Chlorophyceae), these granules were found only in living coenobium cells. In contrast, dead coenobium cells contained many granules without birefringence-an important finding. Another important finding included birefringent lamellar structure of the transverse cell wall and weak birefringence of pyrenoids in filamentous algae of genus Spirogyra (Zygnematales, Conjugatophyceae). It was clearly displayed by the negative phase contrast and has not been documented by other methods. This method can also record the very weak birefringence of the frustule of a diatom of genus Pinnularia (Naviculales, Bacillariophyceae), which was further reinforced by the use of quartz compensator-an important finding. Simultaneous use of negative phase contrast and polarization microscopy allowed us to study not only birefringent granules of storage substances in microorganisms, but also the individual lamellae of the cell walls of filamentous algae and very thin frustule walls in diatoms. These can be visualized only by this contrast method, which provides a higher resolution (subjective opinion only) than other methods such as positive phase contrast or relief contrast.
- MeSH
- Anisotropy MeSH
- Cell Biology instrumentation MeSH
- Cell Wall chemistry MeSH
- Chlorophyta chemistry cytology MeSH
- Cytological Techniques methods MeSH
- Cytoplasm chemistry MeSH
- Birefringence MeSH
- Euglenida chemistry cytology MeSH
- Microscopy, Phase-Contrast * MeSH
- Microscopy, Polarization * MeSH
- Diatoms chemistry cytology MeSH
- Zygnematales chemistry cytology MeSH
- Publication type
- Journal Article MeSH
Polarization and positive phase contrast microscope were concomitantly used in the study of the internal structure of microbial cells. Positive phase contrast allowed us to view even the fine cell structure with a refractive index approaching that of the surrounding environment, e.g., the cytoplasm, and transferred the invisible phase image to a visible amplitude image. With polarization microscopy, crossed polarizing filters together with compensators and a rotary stage showed the birefringence of different cell structures. Material containing algae was collected in ponds in Sýkořice and Zbečno villages (Křivoklát region). The objects were studied in laboratory microscopes LOMO MIN-8 Sankt Petersburg and Polmi A Carl Zeiss Jena fitted with special optics for positive phase contrast, polarizers, analyzers, compensators, rotary stages, and digital SLR camera Nikon D 70 for image capture. Anisotropic granules were found in the cells of flagellates of the order Euglenales, in green algae of the orders Chlorococcales and Chlorellales, and in desmid algae of the order Desmidiales. The cell walls of filamentous algae of the orders Zygnematales and Ulotrichales were found to exhibit significant birefringence; in addition, relatively small amounts of small granules were found in the cytoplasm. A typical shape-related birefringence of the cylindrical walls and the septa between the cells differed in intensity, which was especially apparent when using a Zeiss compensator RI-c during its successive double setting. In conclusion, the anisotropic granules found in the investigated algae mostly showed strong birefringence and varied in number, size, and location of the cells. Representatives of the order Chlorococcales contained the highest number of granules per cell, and the size of these granules was almost double than that of the other monitored microorganisms. Very strong birefringence was exhibited by cell walls of filamentous algae; it differed in the intensity between the cylindrical peripheral wall and the partitions between the cells. Positive phase contrast enabled us to study the morphological relationship of various fine structures in the cell (poorly visible in conventional microscope) to anisotropic structures that have been well defined by polarization microscopy.