Most cited article - PubMed ID 24877930
Measurement of inclusive W and Z boson production cross sections in pp collisions at sqrt[s] = 8 TeV
A measurement of the jet mass distribution in hadronic decays of Lorentz-boosted top quarks is presented. The measurement is performed in the lepton + jets channel of top quark pair production (tt¯) events, where the lepton is an electron or muon. The products of the hadronic top quark decay are reconstructed using a single large-radius jet with transverse momentum greater than 400GeV. The data were collected with the CMS detector at the LHC in proton-proton collisions and correspond to an integrated luminosity of 138fb-1. The differential tt¯ production cross section as a function of the jet mass is unfolded to the particle level and is used to extract the top quark mass. The jet mass scale is calibrated using the hadronic W boson decay within the large-radius jet. The uncertainties in the modelling of the final state radiation are reduced by studying angular correlations in the jet substructure. These developments lead to a significant increase in precision, and a top quark mass of 173.06±0.84GeV.
- Publication type
- Journal Article MeSH
A search for pair production of heavy scalar leptoquarks (LQs), each decaying into a top quark and a τ lepton, is presented. The search considers final states with an electron or a muon, one or two τ leptons that decayed to hadrons, and additional jets. The data were collected in 2016 in proton-proton collisions at s = 13 Te with the CMS detector at the LHC, and correspond to an integrated luminosity of 35.9 fb - 1 . No evidence for pair production of LQs is found. Assuming a branching fraction of unity for the decay LQ → t τ , upper limits on the production cross section are set as a function of LQ mass, excluding masses below 900 Ge at 95% confidence level. These results provide the most stringent limits to date on the production of scalar LQs that decay to a top quark and a τ lepton.
- Publication type
- Journal Article MeSH
High-precision measurements by the ATLAS Collaboration are presented of inclusive W+→ℓ+ν , W-→ℓ-ν¯ and Z/γ∗→ℓℓ ( ℓ=e,μ ) Drell-Yan production cross sections at the LHC. The data were collected in proton-proton collisions at s=7TeV with an integrated luminosity of 4.6fb-1 . Differential W+ and W- cross sections are measured in a lepton pseudorapidity range |ηℓ|<2.5 . Differential Z/γ∗ cross sections are measured as a function of the absolute dilepton rapidity, for |yℓℓ|<3.6 , for three intervals of dilepton mass, mℓℓ , extending from 46 to 150GeV . The integrated and differential electron- and muon-channel cross sections are combined and compared to theoretical predictions using recent sets of parton distribution functions. The data, together with the final inclusive e±p scattering cross-section data from H1 and ZEUS, are interpreted in a next-to-next-to-leading-order QCD analysis, and a new set of parton distribution functions, ATLAS-epWZ16, is obtained. The ratio of strange-to-light sea-quark densities in the proton is determined more accurately than in previous determinations based on collider data only, and is established to be close to unity in the sensitivity range of the data. A new measurement of the CKM matrix element |Vcs| is also provided.
- Publication type
- Journal Article MeSH
Measurements of the differential and double-differential Drell-Yan cross sections in the dielectron and dimuon channels are presented. They are based on proton-proton collision data at [Formula: see text] recorded with the CMS detector at the LHC and corresponding to an integrated luminosity of 19.7[Formula: see text]. The measured inclusive cross section in the [Formula: see text] peak region (60-120[Formula: see text]), obtained from the combination of the dielectron and dimuon channels, is [Formula: see text], where the statistical uncertainty is negligible. The differential cross section [Formula: see text] in the dilepton mass range 15-2000[Formula: see text] is measured and corrected to the full phase space. The double-differential cross section [Formula: see text] is also measured over the mass range 20 to 1500[Formula: see text] and absolute dilepton rapidity from 0 to 2.4. In addition, the ratios of the normalized differential cross sections measured at [Formula: see text] and 8[Formula: see text] are presented. These measurements are compared to the predictions of perturbative QCD at next-to-leading and next-to-next-to-leading (NNLO) orders using various sets of parton distribution functions (PDFs). The results agree with the NNLO theoretical predictions computed with fewz 3.1 using the CT10 NNLO and NNPDF2.1 NNLO PDFs. The measured double-differential cross section and ratio of normalized differential cross sections are sufficiently precise to constrain the proton PDFs.
- Publication type
- Journal Article MeSH