Nejvíce citovaný článek - PubMed ID 24984032
Dual effects of hydrogen sulfide donor on meiosis and cumulus expansion of porcine cumulus-oocyte complexes
Hydrogen sulfide (H2S) is a gaseous signaling molecule produced in the body by three enzymes: cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (3-MST). H2S is crucial in various physiological processes associated with female mammalian reproduction. These include estrus cycle, oocyte maturation, oocyte aging, ovulation, embryo transport and early embryo development, the development of the placenta and fetal membranes, pregnancy, and the initiation of labor. Despite the confirmed presence of H2S-producing enzymes in all female reproductive tissues, as described in this review, the exact mechanisms of H2S action in these tissues remain in most cases unclear. Therefore, this review aims to summarize the knowledge about the presence and effects of H2S in these tissues and outline possible signaling pathways that mediate these effects. Understanding these pathways may lead to the development of new therapeutic strategies in the field of women's health and perinatal medicine.
- Klíčová slova
- cystathionine beta synthase, cystathionine gamma lyase, early embryo development, female reproduction, gravidity, hydrogen sulfide, oocyte physiology, uterus,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Oxidative stress impairs the correct course of meiotic maturation, and it is known that the oocytes are exposed to increased oxidative stress during meiotic maturation in in vitro conditions. Thus, reduction of oxidative stress can lead to improved quality of cultured oocytes. The gasotransmitter carbon monoxide (CO) has a cytoprotective effect in somatic cells. The CO is produced in cells by the enzyme heme oxygenase (HO) and the heme oxygenase/carbon monoxide (HO/CO) pathway has been shown to have an antioxidant effect in somatic cells. It has not yet been investigated whether the CO has an antioxidant effect in oocytes as well. We assessed the level of expression of HO mRNA, using reverse transcription polymerase chain reaction. The HO protein localization was evaluated by the immunocytochemical method. The influence of CO or HO inhibition on meiotic maturation was evaluated in oocytes cultured in a culture medium containing CO donor (CORM-2 or CORM-A1) or HO inhibitor Zn-protoporphyrin IX (Zn-PP IX). Detection of reactive oxygen species (ROS) was performed using the oxidant-sensing probe 2',7'-dichlorodihydrofluorescein diacetate. We demonstrated the expression of mRNA and proteins of both HO isoforms in porcine oocytes during meiotic maturation. The inhibition of HO enzymes by Zn-PP IX did not affect meiotic maturation. CO delivered by CORM-2 or CORM-A1 donors led to a reduction in the level of ROS in the oocytes during meiotic maturation. However, exogenously delivered CO also inhibited meiotic maturation, especially at higher concentrations. In summary, the CO signaling molecule has antioxidant properties in porcine oocytes and may also be involved in the regulation of meiotic maturation.
- Klíčová slova
- Carbon monoxide, Heme oxygenase, Meiotic maturation, Oocyte, Oxidative stress,
- Publikační typ
- časopisecké články MeSH
The role of hydrogen sulfide (H2S) is addressed in Xenopuslaevis oocytes. Three enzymes involved in H2S metabolism, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
- Klíčová slova
- Xenopus laevis, cell cycle, hydrogen sulfide, meiosis, oocyte,
- MeSH
- apoptóza účinky léků MeSH
- cyklin B metabolismus MeSH
- cystathionin-beta-synthasa antagonisté a inhibitory metabolismus MeSH
- cystathionin-gama-lyasa antagonisté a inhibitory metabolismus MeSH
- cytoplazma metabolismus MeSH
- faktor podporující zrání metabolismus MeSH
- fosfatasy cdc25 metabolismus MeSH
- katalasa metabolismus MeSH
- meióza účinky léků MeSH
- metafáze účinky léků MeSH
- oocyty chemie enzymologie metabolismus MeSH
- profáze meiózy I účinky léků MeSH
- proteinkinasy metabolismus MeSH
- proteiny buněčného cyklu metabolismus MeSH
- proteiny Xenopus metabolismus MeSH
- reaktivní formy kyslíku metabolismus MeSH
- signální transdukce účinky léků MeSH
- sulfan metabolismus MeSH
- sulfidy metabolismus farmakologie MeSH
- sulfurtransferasy antagonisté a inhibitory metabolismus MeSH
- superoxiddismutasa metabolismus MeSH
- viabilita buněk účinky léků MeSH
- Xenopus laevis MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-mercaptopyruvate sulphurtransferase MeSH Prohlížeč
- CDC25C protein, human MeSH Prohlížeč
- CDK1 protein, Xenopus MeSH Prohlížeč
- cyklin B MeSH
- cystathionin-beta-synthasa MeSH
- cystathionin-gama-lyasa MeSH
- faktor podporující zrání MeSH
- fosfatasy cdc25 MeSH
- katalasa MeSH
- proteinkinasy MeSH
- proteiny buněčného cyklu MeSH
- proteiny Xenopus MeSH
- reaktivní formy kyslíku MeSH
- sodium bisulfide MeSH Prohlížeč
- sulfan MeSH
- sulfidy MeSH
- sulfurtransferasy MeSH
- superoxiddismutasa MeSH
BACKGROUND: Hydrogen sulfide has been shown to improve the quality of oocytes destined for in vitro fertilization. Although hydrogen sulfide is capable of modulating ion channel activity in somatic cells, the role of hydrogen sulfide in gametes and embryos remains unknown. Our observations confirmed the hypothesis that the KATP and L-type Ca2+ ion channels play roles in porcine oocyte ageing and revealed a plausible contribution of hydrogen sulfide to the modulation of ion channel activity. RESULTS: We confirmed the benefits of the activation and suppression of the KATP and L-type Ca2+ ion channels, respectively, for the preservation of oocyte quality. CONCLUSIONS: Our experiments identified hydrogen sulfide as promoting the desired ion channel activity, with the capacity to protect porcine oocytes against cell death. Further experiments are needed to determine the exact mechanism of hydrogen sulfide in gametes and embryos.
- Klíčová slova
- Gasotransmitter, Hydrogen sulfide, Ion channel, Oocyte, Oocyte ageing,
- MeSH
- adenosintrifosfát MeSH
- blokátory kalciových kanálů farmakologie MeSH
- draslíkové kanály aktivované vápníkem účinky léků fyziologie MeSH
- fenotyp MeSH
- minoxidil farmakologie MeSH
- oocyty účinky léků metabolismus MeSH
- prasata MeSH
- signální transdukce účinky léků MeSH
- stárnutí buněk fyziologie MeSH
- sulfan farmakologie MeSH
- vápníkové kanály účinky léků fyziologie MeSH
- verapamil farmakologie MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- adenosintrifosfát MeSH
- blokátory kalciových kanálů MeSH
- draslíkové kanály aktivované vápníkem MeSH
- minoxidil MeSH
- sulfan MeSH
- vápníkové kanály MeSH
- verapamil MeSH
If fertilization of matured oocyte does not occur, unfertilized oocyte undergoes aging, resulting in a time-dependent reduction of the oocyte's quality. The aging of porcine oocytes can lead to apoptosis. Carbon monoxide (CO), a signal molecule produced by the heme oxygenase (HO), possesses cytoprotective and anti-apoptotic effects that have been described in somatic cells. However, the effects of CO in oocytes have yet to be investigated. By immunocytochemistry method we detected that both isoforms of heme oxygenase (HO-1 and HO-2) are present in the porcine oocytes. Based on the morphological signs of oocyte aging, it was found that the inhibition of both HO isoforms by Zn-protoporphyrin IX (Zn-PP IX) leads to an increase in the number of apoptotic oocytes and decrease in the number of intact oocytes during aging. Contrarily, the presence of CO donors (CORM-2 or CORM-A1) significantly decrease the number of apoptotic oocytes while increasing the number of intact oocytes. We also determined that CO donors significantly decrease the caspase-3 (CAS-3) activity. Our results suggest that HO/CO contributes to the sustaining viability through regulation of apoptosis during in vitro aging of porcine oocytes.
- Klíčová slova
- Aging, Antiapoptotic, Carbon monoxide, Caspase-3, Heme oxygenase, Oocyte, Pigs,
- Publikační typ
- časopisecké články MeSH
Creation of both gametes, sperm and oocyte, and their fusion during fertilization are essential step for beginning of life. Although molecular mechanisms regulating gametogenesis, fertilization, and early embryonic development are still subjected to intensive study, a lot of phenomena remain unclear. Based on our best knowledge and own results, we consider gasotransmitters to be essential for various signalisation in oocytes and embryos. In accordance with nitric oxide (NO) and hydrogen sulfide (H2S) physiological necessity, their involvement during oocyte maturation and regulative role in fertilization followed by embryonic development have been described. During these processes, NO- and H2S-derived posttranslational modifications represent the main mode of their regulative effect. While NO represent the most understood gasotransmitter and H2S is still intensively studied gasotransmitter, appreciation of carbon monoxide (CO) role in reproduction is still missing. Overall understanding of gasotransmitters including their interaction is promising for reproductive medicine and assisted reproductive technologies (ART), because these approaches contend with failure of in vitro assisted reproduction.
- MeSH
- asistovaná reprodukce * MeSH
- gametogeneze fyziologie MeSH
- gasotransmitery metabolismus fyziologie MeSH
- lidé MeSH
- oocyty metabolismus fyziologie MeSH
- oxid dusnatý metabolismus fyziologie MeSH
- oxid uhelnatý metabolismus fyziologie MeSH
- posttranslační úpravy proteinů MeSH
- sulfan metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- gasotransmitery MeSH
- oxid dusnatý MeSH
- oxid uhelnatý MeSH
- sulfan MeSH
In vitro cultivation systems for oocytes and embryos are characterised by increased levels of reactive oxygen species (ROS), which can be balanced by the addition of suitable antioxidants. S-allyl cysteine (SAC) is a sulfur compound naturally occurring in garlic (Allium sativum), which is responsible for its high antioxidant properties. In this study, we demonstrated the capacity of SAC (0.1, 0.5 and 1.0 mM) to reduce levels of ROS in maturing oocytes significantly after 24 (reduced by 90.33, 82.87 and 91.62%, respectively) and 48 h (reduced by 86.35, 94.42 and 99.05%, respectively) cultivation, without leading to a disturbance of the standard course of meiotic maturation. Oocytes matured in the presence of SAC furthermore maintained reduced levels of ROS even 22 h after parthenogenic activation (reduced by 66.33, 61.64 and 57.80%, respectively). In these oocytes we also demonstrated a growth of early embryo cleavage rate (increased by 33.34, 35.00 and 35.00%, respectively). SAC may be a valuable supplement to cultivation media.
- Klíčová slova
- Antioxidant, Garlic, Oocyte, Pigs, S-allyl cysteine,
- Publikační typ
- časopisecké články MeSH
Porcine oocytes that have matured in in vitro conditions undergo the process of aging during prolonged cultivation, which is manifested by spontaneous parthenogenetic activation, lysis or fragmentation of aged oocytes. This study focused on the role of hydrogen sulfide (H2S) in the process of porcine oocyte aging. H2S is a gaseous signaling molecule and is produced endogenously by the enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase (CSE) and 3-mercaptopyruvate sulfurtransferase (MPST). We demonstrated that H2S-producing enzymes are active in porcine oocytes and that a statistically significant decline in endogenous H2S production occurs during the first day of aging. Inhibition of these enzymes accelerates signs of aging in oocytes and significantly increases the ratio of fragmented oocytes. The presence of exogenous H2S from a donor (Na2S.9H2O) significantly suppressed the manifestations of aging, reversed the effects of inhibitors and resulted in the complete suppression of oocyte fragmentation. Cultivation of aging oocytes in the presence of H2S donor positively affected their subsequent embryonic development following parthenogenetic activation. Although no unambiguous effects of exogenous H2S on MPF and MAPK activities were detected and the intracellular mechanism underlying H2S activity remains unclear, our study clearly demonstrates the role of H2S in the regulation of porcine oocyte aging.
- MeSH
- cystathionin-beta-synthasa metabolismus MeSH
- cystathionin-gama-lyasa metabolismus MeSH
- embryo savčí účinky léků MeSH
- inhibitory enzymů farmakologie MeSH
- kultivace embrya MeSH
- kultivované buňky MeSH
- oocyty účinky léků fyziologie MeSH
- partenogeneze účinky léků MeSH
- prasata MeSH
- stárnutí buněk účinky léků MeSH
- sulfan metabolismus farmakologie MeSH
- sulfurtransferasy metabolismus MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 3-mercaptopyruvate sulphurtransferase MeSH Prohlížeč
- cystathionin-beta-synthasa MeSH
- cystathionin-gama-lyasa MeSH
- inhibitory enzymů MeSH
- sulfan MeSH
- sulfurtransferasy MeSH