Most cited article - PubMed ID 25057166
Distal and proximal colon cancers differ in terms of molecular, pathological, and clinical features
BACKGROUND: Higher adiposity increases the risk of colorectal cancer (CRC), but whether this relationship varies by anatomical sub-site or by sex is unclear. Further, the metabolic alterations mediating the effects of adiposity on CRC are not fully understood. METHODS: We examined sex- and site-specific associations of adiposity with CRC risk and whether adiposity-associated metabolites explain the associations of adiposity with CRC. Genetic variants from genome-wide association studies of body mass index (BMI) and waist-to-hip ratio (WHR, unadjusted for BMI; N = 806,810), and 123 metabolites from targeted nuclear magnetic resonance metabolomics (N = 24,925), were used as instruments. Sex-combined and sex-specific Mendelian randomization (MR) was conducted for BMI and WHR with CRC risk (58,221 cases and 67,694 controls in the Genetics and Epidemiology of Colorectal Cancer Consortium, Colorectal Cancer Transdisciplinary Study, and Colon Cancer Family Registry). Sex-combined MR was conducted for BMI and WHR with metabolites, for metabolites with CRC, and for BMI and WHR with CRC adjusted for metabolite classes in multivariable models. RESULTS: In sex-specific MR analyses, higher BMI (per 4.2 kg/m2) was associated with 1.23 (95% confidence interval (CI) = 1.08, 1.38) times higher CRC odds among men (inverse-variance-weighted (IVW) model); among women, higher BMI (per 5.2 kg/m2) was associated with 1.09 (95% CI = 0.97, 1.22) times higher CRC odds. WHR (per 0.07 higher) was more strongly associated with CRC risk among women (IVW OR = 1.25, 95% CI = 1.08, 1.43) than men (IVW OR = 1.05, 95% CI = 0.81, 1.36). BMI or WHR was associated with 104/123 metabolites at false discovery rate-corrected P ≤ 0.05; several metabolites were associated with CRC, but not in directions that were consistent with the mediation of positive adiposity-CRC relations. In multivariable MR analyses, associations of BMI and WHR with CRC were not attenuated following adjustment for representative metabolite classes, e.g., the univariable IVW OR for BMI with CRC was 1.12 (95% CI = 1.00, 1.26), and this became 1.11 (95% CI = 0.99, 1.26) when adjusting for cholesterol in low-density lipoprotein particles. CONCLUSIONS: Our results suggest that higher BMI more greatly raises CRC risk among men, whereas higher WHR more greatly raises CRC risk among women. Adiposity was associated with numerous metabolic alterations, but none of these explained associations between adiposity and CRC. More detailed metabolomic measures are likely needed to clarify the mechanistic pathways.
- Keywords
- Body mass index, CCFR, CORECT, Colorectal cancer, Epidemiology, GECCO, Mendelian randomization, Metabolism, NMR, Waist-to-hip ratio,
- MeSH
- Adiposity genetics MeSH
- Genome-Wide Association Study statistics & numerical data MeSH
- Adult MeSH
- Genetic Predisposition to Disease MeSH
- Body Mass Index MeSH
- Polymorphism, Single Nucleotide MeSH
- Colorectal Neoplasms epidemiology etiology genetics metabolism MeSH
- Middle Aged MeSH
- Humans MeSH
- Mendelian Randomization Analysis MeSH
- Metabolome genetics MeSH
- Obesity complications epidemiology genetics metabolism MeSH
- Waist-Hip Ratio MeSH
- Risk Factors MeSH
- Sex Factors MeSH
- Case-Control Studies MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Geographicals
- Europe epidemiology MeSH
BACKGROUND: Telomeres, repetitive DNA capping ends of eukaryotic chromosomes, are important in the maintenance of genomic integrity. Perturbed telomeres are common features of many human malignancies, including colorectal cancer. METHODS: Telomere length (TL), measured by a Monochrome Multiplex Real-Time qPCR, was investigated in tumour tissues, adjacent mucosa, and blood from patients with colorectal cancer with different clinicopathological features and its impact on patient survival. TL was also measured in a limited number of liver metastases, non-cancerous liver tissues or corresponding tissues from the same patients. RESULTS: TL in tumour tissues was shorter than in the adjacent mucosa (P < 0.0001). Shorter TL was observed in tumours with lower stage than in those with advanced stages (P = 0.001). TL was shorter in tumours at the proximal than at the distal sites of the colon (P < 0.0001). Shorter TL was also associated with microsatellite instability (P = 0.001) and mucinous tumour histology (P < 0.0001). Patients with a smaller TL ratio between tumour tissues and the adjacent mucosa were associated with increased overall survival (P = 0.022). Metastasised tumours had shorter telomeres than the adjacent non-cancerous liver tissues (P = 0.0005). CONCLUSIONS: Overall, the results demonstrate differences in TL between tumours and the adjacent mucosa, between tumours located at different sites and association with patient survival.
- MeSH
- Adult MeSH
- Phenotype MeSH
- Colorectal Neoplasms genetics mortality pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Lymphatic Metastasis MeSH
- Microsatellite Instability MeSH
- Prognosis MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Telomere * MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH