Most cited article - PubMed ID 25065127
Neotropical Monogenoidea. 58. Three new species of Gyrodactylus (Gyrodactylidae) from Scleromystax spp. (Callichthyidae) and the proposal of COII gene as an additional fragment for barcoding gyrodactylids
We describe a new species, Gyrodactylus ginestrae n. sp., a parasite of the big-scale sand smelt (Atherina boyeri) from the Black Sea. This is the third monogenean species known from this fish host, found at 70% prevalence, but at relatively low abundance (1.9), on fish gills and fins. The new species is, both morphologically and genetically, most similar to G. salinae, which parasitizes the killifish Aphanius fasciatus (Cyprinodontidae) in the Mediterranean region. These species differ in the size of the haptoral hard parts and the number of small spines of the male copulatory organ. For molecular characterization, the internal transcribed spacer 1 (ITS1), 5.8S rRNA gene, and the internal transcribed spacer 2 (ITS2) were sequenced, completed by a fragment of the COII gene, thereby representing the first molecularly characterized gyrodactylid species from the Black Sea. Phylogenetic reconstruction based on the ITS1-5.8S-ITS2 sequence data indicated the position of G. ginestrae n. sp. in the marine "rugiensis" group of G. (Paranephrotus) and G. (Neonephrotus) subgenera which is part of the monophyletic "long ITS1" group. Taking into account the similarity of G. ginestrae n. sp. to several monogeneans from the Atlantic and Mediterranean regions, we suggest the Boreal-Atlantic origin of this species.
- Keywords
- Brackish water, Gulf of Odessa, Gyrodactylidae, Molecular study, Phylogeny, Ponto-Caspian,
- MeSH
- DNA, Helminth genetics MeSH
- Species Specificity MeSH
- Phylogeny * MeSH
- Osmeriformes parasitology MeSH
- Animal Fins parasitology MeSH
- DNA, Ribosomal genetics MeSH
- Trematoda anatomy & histology classification genetics MeSH
- Gills parasitology MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Black Sea MeSH
- Names of Substances
- DNA, Helminth MeSH
- DNA, Ribosomal MeSH
BACKGROUND: Monogenean flatworms are the main ectoparasites of fishes. Representatives of the species-rich families Gyrodactylidae and Dactylogyridae, especially those infecting cichlid fishes and clariid catfishes, are important parasites in African aquaculture, even more so due to the massive anthropogenic translocation of their hosts worldwide. Several questions on their evolution, such as the phylogenetic position of Macrogyrodactylus and the highly speciose Gyrodactylus, remain unresolved with available molecular markers. Also, diagnostics and population-level research would benefit from the development of higher-resolution genetic markers. We aim to offer genetic resources for work on African monogeneans by providing mitogenomic data of four species (two belonging to Gyrodactylidae, two to Dactylogyridae), and analysing their gene sequences and gene order from a phylogenetic perspective. RESULTS: Using Illumina technology, the first four mitochondrial genomes of African monogeneans were assembled and annotated for the cichlid parasites Gyrodactylus nyanzae, Cichlidogyrus halli, Cichlidogyrus mbirizei (near-complete mitogenome) and the catfish parasite Macrogyrodactylus karibae (near-complete mitogenome). Complete nuclear ribosomal operons were also retrieved, as molecular vouchers. The start codon TTG is new for Gyrodactylus and for Dactylogyridae, as is the incomplete stop codon TA for Dactylogyridae. Especially the nad2 gene is promising for primer development. Gene order was identical for protein-coding genes and differed between the African representatives of these families only in a tRNA gene transposition. A mitochondrial phylogeny based on an alignment of nearly 12,500 bp including 12 protein-coding and two ribosomal RNA genes confirms that the Neotropical oviparous Aglaiogyrodactylus forficulatus takes a sister group position with respect to the other gyrodactylids, instead of the supposedly 'primitive' African Macrogyrodactylus. Inclusion of the African Gyrodactylus nyanzae confirms the paraphyly of Gyrodactylus. The position of the African dactylogyrid Cichlidogyrus is unresolved, although gene order suggests it is closely related to marine ancyrocephalines. CONCLUSIONS: The amount of mitogenomic data available for gyrodactylids and dactylogyrids is increased by roughly one-third. Our study underscores the potential of mitochondrial genes and gene order in flatworm phylogenetics, and of next-generation sequencing for marker development for these non-model helminths for which few primers are available.
- Keywords
- Cichlidae, Cichlidogyrus, Clariidae, Gene order, Gyrodactylus, Macrogyrodactylus, Mitogenome, Monogenea, Monopisthocotylea, Phylogenomics,
- MeSH
- Cichlids parasitology MeSH
- Phylogeny MeSH
- Genome, Mitochondrial MeSH
- Mitochondria classification genetics MeSH
- Platyhelminths genetics MeSH
- Gene Order MeSH
- DNA, Protozoan chemistry isolation & purification metabolism MeSH
- Protozoan Proteins classification genetics MeSH
- RNA, Ribosomal classification genetics MeSH
- Sequence Analysis, DNA MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- DNA, Protozoan MeSH
- Protozoan Proteins MeSH
- RNA, Ribosomal MeSH