Most cited article - PubMed ID 25194285
Impact of general and central adiposity on ventricular-arterial aging in women and men
BACKGROUND: Aortic stiffening and reduced nitric oxide (NO) availability may contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF). OBJECTIVES: This study compared indices of arterial stiffness at rest and during exercise in subjects with HFpEF and hypertensive control subjects to examine their relationships to cardiac hemodynamics and determine whether exertional arterial stiffening can be mitigated by inorganic nitrite. METHODS: A total of 22 hypertensive control subjects and 98 HFpEF subjects underwent hemodynamic exercise testing with simultaneous expired gas analysis to measure oxygen consumption. Invasively measured radial artery pressure waveforms were converted to central aortic waveforms by transfer function to assess integrated measures of pulsatile aortic load, including arterial compliance, resistance, elastance, and wave reflection. RESULTS: Arterial load and wave reflections in HFpEF were similar to those in control subjects at rest. During submaximal exercise, HFpEF subjects displayed reduced total arterial compliance and higher effective arterial elastance despite similar mean arterial pressures in control subjects. This was directly correlated with higher ventricular filling pressures and depressed cardiac output reserve (both p < 0.0001). With peak exercise, increased wave reflections, impaired compliance, and increased resistance and elastance were observed in subjects with HFpEF. A subset of HFpEF subjects (n = 52) received sodium nitrite or placebo therapy in a 1:1 double-blind, randomized fashion. Compared to placebo, nitrite decreased aortic wave reflections at rest and improved arterial compliance and elastance and central hemodynamics during exercise. CONCLUSIONS: Abnormal pulsatile aortic loading during exercise occurs in HFpEF independent of hypertension and is correlated with classical hemodynamic derangements that develop with stress. Inorganic nitrite mitigates arterial stiffening with exercise and improves hemodynamics, indicating that arterial stiffening with exercise is at least partially reversible. Further study is required to test effects of agents that target the NO pathway in reducing arterial stiffness in HFpEF. (Study of Exercise and Heart Function in Patients With Heart Failure and Pulmonary Vascular Disease [EXEC]; NCT01418248. Acute Effects of Inorganic Nitrite on Cardiovascular Hemodynamics in Heart Failure With Preserved Ejection Fraction; NCT01932606. Inhaled Sodium Nitrite on Heart Failure With Preserved Ejection Fraction; NCT02262078).
- Keywords
- HFpEF, aortic stiffness, exercise, heart failure, hypertension,
- MeSH
- Exercise physiology MeSH
- Nitrates pharmacology MeSH
- Double-Blind Method MeSH
- Ventricular Function, Left physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Rest physiology MeSH
- Prospective Studies MeSH
- Aged MeSH
- Heart Failure drug therapy physiopathology MeSH
- Stroke Volume physiology MeSH
- Vascular Stiffness physiology MeSH
- Exercise Test MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Names of Substances
- Nitrates MeSH
- sodium nitrate MeSH Browser
BACKGROUND: Heart failure (HF) with preserved ejection fraction (HFpEF) is a heterogeneous syndrome. Phenotyping patients into pathophysiologically homogeneous groups may enable better targeting of treatment. Obesity is common in HFpEF and has many cardiovascular effects, suggesting that it may be a viable candidate for phenotyping. We compared cardiovascular structure, function, and reserve capacity in subjects with obese HFpEF, those with nonobese HFpEF, and control subjects. METHODS: Subjects with obese HFpEF (body mass index ≥35 kg/m2; n=99), nonobese HFpEF (body mass index <30 kg/m2; n=96), and nonobese control subjects free of HF (n=71) underwent detailed clinical assessment, echocardiography, and invasive hemodynamic exercise testing. RESULTS: Compared with both subjects with nonobese HFpEF and control subjects, subjects with obese HFpEF displayed increased plasma volume (3907 mL [3563-4333 mL] versus 2772 mL [2555-3133 mL], and 2680 mL [2380-3006 mL]; P<0.0001), more concentric left ventricular remodeling, greater right ventricular dilatation (base, 34±7 versus 31±6 and 30±6 mm, P=0.0005; length, 66±7 versus 61±7 and 61±7 mm, P<0.0001), more right ventricular dysfunction, increased epicardial fat thickness (10±2 versus 7±2 and 6±2 mm; P<0.0001), and greater total epicardial heart volume (945 mL [831-1105 mL] versus 797 mL [643-979 mL] and 632 mL [517-768 mL]; P<0.0001), despite lower N-terminal pro-B-type natriuretic peptide levels. Pulmonary capillary wedge pressure was correlated with body mass and plasma volume in obese HFpEF (r=0.22 and 0.27, both P<0.05) but not in nonobese HFpEF (P≥0.3). The increase in heart volumes in obese HFpEF was associated with greater pericardial restraint and heightened ventricular interdependence, reflected by increased ratio of right- to left-sided heart filling pressures (0.64±0.17 versus 0.56±0.19 and 0.53±0.20; P=0.0004), higher pulmonary venous pressure relative to left ventricular transmural pressure, and greater left ventricular eccentricity index (1.10±0.19 versus 0.99±0.06 and 0.97±0.12; P<0.0001). Interdependence was enhanced as pulmonary artery pressure load increased (P for interaction <0.05). Compared with those with nonobese HFpEF and control subjects, obese patients with HFpEF displayed worse exercise capacity (peak oxygen consumption, 7.7±2.3 versus 10.0±3.4 and12.9±4.0 mL/min·kg; P<0.0001), higher biventricular filling pressures with exercise, and depressed pulmonary artery vasodilator reserve. CONCLUSIONS: Obesity-related HFpEF is a genuine form of cardiac failure and a clinically relevant phenotype that may require specific treatments.
- Keywords
- exercise, heart failure, hypertension, pulmonary, obesity, pericardium,
- MeSH
- Phenotype * MeSH
- Hemodynamics physiology MeSH
- Cohort Studies MeSH
- Middle Aged MeSH
- Humans MeSH
- Obesity diagnosis epidemiology physiopathology MeSH
- Ventricular Remodeling physiology MeSH
- Retrospective Studies MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Heart Failure diagnosis epidemiology physiopathology MeSH
- Stroke Volume physiology MeSH
- Exercise Test methods MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH