Most cited article - PubMed ID 25814839
Measurement of [Formula: see text] production with a veto on additional central jet activity in pp collisions at [Formula: see text] TeV using the ATLAS detector
A search for new heavy particles that decay into top-quark pairs is performed using data collected from proton-proton collisions at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. The integrated luminosity of the data sample is 36.1 fb - 1 . Events consistent with top-quark pair production are selected by requiring a single isolated charged lepton, missing transverse momentum and jet activity compatible with a hadronic top-quark decay. Jets identified as likely to contain b-hadrons are required to reduce the background from other Standard Model processes. The invariant mass spectrum of the candidate top-quark pairs is examined for local excesses above the background expectation. No significant deviations from the Standard Model predictions are found. Exclusion limits are set on the production cross-section times branching ratio for hypothetical Z ' bosons, Kaluza-Kein gluons and Kaluza-Klein gravitons that decay into top-quark pairs.
- Publication type
- Journal Article MeSH
Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at s = 7 TeV . The jets were required to have transverse momentum p T jet > 40 GeV and pseudorapidity 1.5 < | η jet | < 4.7 , and to have values of η jet with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb - 1 . Events with no charged particles with p T > 0.2 GeV in the interval - 1 < η < 1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the p T of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
- Keywords
- CMS, Diffraction, Physics, QCD,
- Publication type
- Journal Article MeSH
This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t t ¯ events produced in 20.2 fb - 1 of s = 8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge e μ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m t pole = 173.2 ± 0.9 ± 0.8 ± 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.
- Publication type
- Journal Article MeSH
This paper presents a measurement of the polarisation of W bosons from [Formula: see text] decays, reconstructed in events with one high-[Formula: see text] lepton and at least four jets. Data from pp collisions at the LHC were collected at [Formula: see text] = 8 TeV and correspond to an integrated luminosity of 20.2 fb[Formula: see text]. The angle [Formula: see text] between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of [Formula: see text] is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are [Formula: see text], [Formula: see text] and [Formula: see text], and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.
- Publication type
- Journal Article MeSH
Measurements of jet activity in top-quark pair events produced in proton-proton collisions are presented, using 3.2 fb[Formula: see text] of pp collision data at a centre-of-mass energy of 13 TeV collected by the ATLAS experiment at the Large Hadron Collider. Events are chosen by requiring an opposite-charge [Formula: see text] pair and two b-tagged jets in the final state. The normalised differential cross-sections of top-quark pair production are presented as functions of additional-jet multiplicity and transverse momentum, [Formula: see text]. The fraction of signal events that do not contain additional jet activity in a given rapidity region, the gap fraction, is measured as a function of the [Formula: see text] threshold for additional jets, and is also presented for different invariant mass regions of the [Formula: see text] system. All measurements are corrected for detector effects and presented as particle-level distributions compared to predictions with different theoretical approaches for QCD radiation. While the kinematics of the jets from top-quark decays are described well, the generators show differing levels of agreement with the measurements of observables that depend on the production of additional jets.
- Publication type
- Journal Article MeSH
The cross section of top quark-antiquark pair production in proton-proton collisions at [Formula: see text] is measured by the CMS experiment at the LHC, using data corresponding to an integrated luminosity of 2.2[Formula: see text]. The measurement is performed by analyzing events in which the final state includes one electron, one muon, and two or more jets, at least one of which is identified as originating from hadronization of a b quark. The measured cross section is [Formula: see text], in agreement with the expectation from the standard model.
- Publication type
- Journal Article MeSH
Measurements of normalized differential cross-sections of top-quark pair production are presented as a function of the top-quark, [Formula: see text] system and event-level kinematic observables in proton-proton collisions at a centre-of-mass energy of [Formula: see text]. The observables have been chosen to emphasize the [Formula: see text] production process and to be sensitive to effects of initial- and final-state radiation, to the different parton distribution functions, and to non-resonant processes and higher-order corrections. The dataset corresponds to an integrated luminosity of 20.3 fb[Formula: see text], recorded in 2012 with the ATLAS detector at the CERN Large Hadron Collider. Events are selected in the lepton+jets channel, requiring exactly one charged lepton and at least four jets with at least two of the jets tagged as originating from a b-quark. The measured spectra are corrected for detector effects and are compared to several Monte Carlo simulations. The results are in fair agreement with the predictions over a wide kinematic range. Nevertheless, most generators predict a harder top-quark transverse momentum distribution at high values than what is observed in the data. Predictions beyond NLO accuracy improve the agreement with data at high top-quark transverse momenta. Using the current settings and parton distribution functions, the rapidity distributions are not well modelled by any generator under consideration. However, the level of agreement is improved when more recent sets of parton distribution functions are used.
- Publication type
- Journal Article MeSH
A search for singly produced vector-like Q quarks, where Q can be either a T quark with charge [Formula: see text] or a Y quark with charge [Formula: see text], is performed in proton-proton collisions recorded with the ATLAS detector at the LHC. The dataset corresponds to an integrated luminosity of 20.3 fb[Formula: see text] and was produced with a centre-of-mass energy of [Formula: see text] TeV. This analysis targets [Formula: see text] decays where the W boson decays leptonically. A veto on massive large-radius jets is used to reject the dominant [Formula: see text] background. The reconstructed Q-candidate mass, ranging from 0.4 to 1.2 TeV, is used in the search to discriminate signal from background processes. No significant deviation from the Standard Model expectation is observed, and limits are set on the [Formula: see text] cross-section times branching ratio. The results are also interpreted as limits on the QWb coupling and the mixing with the Standard Model sector for a singlet T quark or a Y quark from a doublet. T quarks with masses below 0.95 TeV are excluded at 95 % confidence level, assuming a unit coupling and a BR[Formula: see text], whereas the expected limit is 1.10 TeV.
- Publication type
- Journal Article MeSH
Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
- Publication type
- Journal Article MeSH
This paper reports a detailed study of techniques for identifying boosted, hadronically decaying W bosons using 20.3 fb[Formula: see text] of proton-proton collision data collected by the ATLAS detector at the LHC at a centre-of-mass energy [Formula: see text]. A range of techniques for optimising the signal jet mass resolution are combined with various jet substructure variables. The results of these studies in Monte Carlo simulations show that a simple pairwise combination of groomed jet mass and one substructure variable can provide a 50 % efficiency for identifying W bosons with transverse momenta larger than 200 GeV while maintaining multijet background efficiencies of 2-4 % for jets with the same transverse momentum. These signal and background efficiencies are confirmed in data for a selection of tagging techniques.
- Publication type
- Journal Article MeSH