Most cited article - PubMed ID 25814840
Measurement of the top quark mass with the template method in the [Formula: see text] channel using ATLAS data
The mass of the top quark is measured in a data set corresponding to 4.6 [Formula: see text] of proton-proton collisions with centre-of-mass energy [Formula: see text] TeV collected by the ATLAS detector at the LHC. Events consistent with hadronic decays of top-antitop quark pairs with at least six jets in the final state are selected. The substantial background from multijet production is modelled with data-driven methods that utilise the number of identified [Formula: see text]-quark jets and the transverse momentum of the sixth leading jet, which have minimal correlation. The top-quark mass is obtained from template fits to the ratio of three-jet to dijet mass. The three-jet mass is calculated from the three jets produced in a top-quark decay. Using these three jets the dijet mass is obtained from the two jets produced in the [Formula: see text] boson decay. The top-quark mass obtained from this fit is thus less sensitive to the uncertainty in the energy measurement of the jets. A binned likelihood fit yields a top-quark mass of [Formula: see text].
- Keywords
- ATLAS, Fully hadronic, LHC, Proton–proton collisions, Top quark, Top-quark mass,
- Publication type
- Journal Article MeSH
The jet energy scale (JES) and its systematic uncertainty are determined for jets measured with the ATLAS detector using proton-proton collision data with a centre-of-mass energy of [Formula: see text] TeV corresponding to an integrated luminosity of [Formula: see text][Formula: see text]. Jets are reconstructed from energy deposits forming topological clusters of calorimeter cells using the anti-[Formula: see text] algorithm with distance parameters [Formula: see text] or [Formula: see text], and are calibrated using MC simulations. A residual JES correction is applied to account for differences between data and MC simulations. This correction and its systematic uncertainty are estimated using a combination of in situ techniques exploiting the transverse momentum balance between a jet and a reference object such as a photon or a [Formula: see text] boson, for [Formula: see text] and pseudorapidities [Formula: see text]. The effect of multiple proton-proton interactions is corrected for, and an uncertainty is evaluated using in situ techniques. The smallest JES uncertainty of less than 1 % is found in the central calorimeter region ([Formula: see text]) for jets with [Formula: see text]. For central jets at lower [Formula: see text], the uncertainty is about 3 %. A consistent JES estimate is found using measurements of the calorimeter response of single hadrons in proton-proton collisions and test-beam data, which also provide the estimate for [Formula: see text] TeV. The calibration of forward jets is derived from dijet [Formula: see text] balance measurements. The resulting uncertainty reaches its largest value of 6 % for low-[Formula: see text] jets at [Formula: see text]. Additional JES uncertainties due to specific event topologies, such as close-by jets or selections of event samples with an enhanced content of jets originating from light quarks or gluons, are also discussed. The magnitude of these uncertainties depends on the event sample used in a given physics analysis, but typically amounts to 0.5-3 %.
- Publication type
- Journal Article MeSH
The inclusive top quark pair ([Formula: see text]) production cross-section [Formula: see text] has been measured in proton-proton collisions at [Formula: see text] and [Formula: see text] with the ATLAS experiment at the LHC, using [Formula: see text] events with an opposite-charge [Formula: see text] pair in the final state. The measurement was performed with the 2011 7 TeV dataset corresponding to an integrated luminosity of 4.6 [Formula: see text] and the 2012 8 TeV dataset of 20.3 [Formula: see text]. The numbers of events with exactly one and exactly two [Formula: see text]-tagged jets were counted and used to simultaneously determine [Formula: see text] and the efficiency to reconstruct and [Formula: see text]-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section was measured to be: [Formula: see text]where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, knowledge of the integrated luminosity and of the LHC beam energy. The results are consistent with recent theoretical QCD calculations at next-to-next-to-leading order. Fiducial measurements corresponding to the experimental acceptance of the leptons are also reported, together with the ratio of cross-sections measured at the two centre-of-mass energies. The inclusive cross-section results were used to determine the top quark pole mass via the dependence of the theoretically predicted cross-section on [Formula: see text] giving a result of [Formula: see text][Formula: see text] GeV. By looking for an excess of [Formula: see text] production with respect to the QCD prediction, the results were also used to place limits on the pair-production of supersymmetric top squarks [Formula: see text] with masses close to the top quark mass, decaying via [Formula: see text] to predominantly right-handed top quarks and a light neutralino [Formula: see text], the lightest supersymmetric particle. Top squarks with masses between the top quark mass and 177 GeV are excluded at the 95 % confidence level.
- Publication type
- Journal Article MeSH
The mass of the top quark is measured using a sample of [Formula: see text] candidate events with at least six jets in the final state. The sample is selected from data collected with the CMS detector in pp collisions at [Formula: see text] TeV in 2011 and corresponds to an integrated luminosity of 3.54 [Formula: see text]. The mass is reconstructed for each event employing a kinematic fit of the jets to a [Formula: see text] hypothesis. The top-quark mass is measured to be [Formula: see text] GeV. A combination with previously published measurements in other decay modes by CMS yields a mass of [Formula: see text] GeV.
- Publication type
- Journal Article MeSH
A measurement of jet shapes in top-quark pair events using 1.8 fb-1 of [Formula: see text]pp collision data recorded by the ATLAS detector at the LHC is presented. Samples of top-quark pair events are selected in both the single-lepton and dilepton final states. The differential and integrated shapes of the jets initiated by bottom-quarks from the top-quark decays are compared with those of the jets originated by light-quarks from the hadronic W-boson decays [Formula: see text] in the single-lepton channel. The light-quark jets are found to have a narrower distribution of the momentum flow inside the jet area than b-quark jets.
- Publication type
- Journal Article MeSH
A simultaneous measurement of the top-quark, W-boson, and neutrino masses is reported for [Formula: see text] events selected in the dilepton final state from a data sample corresponding to an integrated luminosity of 5.0 fb-1 collected by the CMS experiment in pp collisions at [Formula: see text]. The analysis is based on endpoint determinations in kinematic distributions. When the neutrino and W-boson masses are constrained to their world-average values, a top-quark mass value of [Formula: see text] is obtained. When such constraints are not used, the three particle masses are obtained in a simultaneous fit. In this unconstrained mode the study serves as a test of mass determination methods that may be used in beyond standard model physics scenarios where several masses in a decay chain may be unknown and undetected particles lead to underconstrained kinematics.
- Publication type
- Journal Article MeSH