Nejvíce citovaný článek - PubMed ID 25814854
Jet energy resolution in proton-proton collisions at [Formula: see text] recorded in 2010 with the ATLAS detector
Searches for non-resonant and resonant Higgs boson pair production are performed in the γ γ W W ∗ channel with the final state of γ γ ℓ ν j j using 36.1 fb - 1 of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on σ ( p p → X ) × B ( X → H H ) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500 GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the H → γ γ and H → W W ∗ are assumed.
- Publikační typ
- časopisecké články MeSH
The performance of the missing transverse momentum ( E T miss ) reconstruction with the ATLAS detector is evaluated using data collected in proton-proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct E T miss , fully calibrated electrons, muons, photons, hadronically decaying τ -leptons , and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various E T miss contributions. The individual terms as well as the overall reconstructed E T miss are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the E T miss scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb - 1 .
- Publikační typ
- časopisecké články MeSH
Previous studies have shown that weighted angular moments derived from jet constituents encode the colour connections between partons that seed the jets. This paper presents measurements of two such distributions, the jet-pull angle and jet-pull magnitude, both of which are derived from the jet-pull angular moment. The measurement is performed in t t ¯ events with one leptonically decaying W boson and one hadronically decaying W boson, using 36.1 fb - 1 of pp collision data recorded by the ATLAS detector at s = 13 TeV delivered by the Large Hadron Collider. The observables are measured for two dijet systems, corresponding to the colour-connected daughters of the W boson and the two b-jets from the top-quark decays, which are not expected to be colour connected. To allow the comparison of the measured distributions to colour model predictions, the measured distributions are unfolded to particle level, after correcting for experimental effects introduced by the detector. While good agreement can be found for some combinations of predictions and observables, none of the predictions describes the data well across all observables.
- Publikační typ
- časopisecké články MeSH
Measurements of transverse energy-energy correlations and their associated asymmetries in multi-jet events using the ATLAS detector at the LHC are presented. The data used correspond to s = 8 TeV proton-proton collisions with an integrated luminosity of 20.2 fb - 1 . The results are presented in bins of the scalar sum of the transverse momenta of the two leading jets, unfolded to the particle level and compared to the predictions from Monte Carlo simulations. A comparison with next-to-leading-order perturbative QCD is also performed, showing excellent agreement within the uncertainties. From this comparison, the value of the strong coupling constant is extracted for different energy regimes, thus testing the running of α s ( μ ) predicted in QCD up to scales over 1 TeV . A global fit to the transverse energy-energy correlation distributions yields α s ( m Z ) = 0.1162 ± 0.0011 (exp.) - 0.0070 + 0.0084 (theo.) , while a global fit to the asymmetry distributions yields a value of α s ( m Z ) = 0.1196 ± 0.0013 (exp.) - 0.0045 + 0.0075 (theo.) .
- Publikační typ
- časopisecké články MeSH
This paper presents single lepton and dilepton kinematic distributions measured in dileptonic t t ¯ events produced in 20.2 fb - 1 of s = 8 TeV pp collisions recorded by the ATLAS experiment at the LHC. Both absolute and normalised differential cross-sections are measured, using events with an opposite-charge e μ pair and one or two b-tagged jets. The cross-sections are measured in a fiducial region corresponding to the detector acceptance for leptons, and are compared to the predictions from a variety of Monte Carlo event generators, as well as fixed-order QCD calculations, exploring the sensitivity of the cross-sections to the gluon parton distribution function. Some of the distributions are also sensitive to the top quark pole mass; a combined fit of NLO fixed-order predictions to all the measured distributions yields a top quark mass value of m t pole = 173.2 ± 0.9 ± 0.8 ± 1.2 GeV, where the three uncertainties arise from data statistics, experimental systematics, and theoretical sources.
- Publikační typ
- časopisecké články MeSH
This paper presents a study of W W γ and W Z γ triboson production using events from proton-proton collisions at a centre-of-mass energy of s = 8 TeV recorded with the ATLAS detector at the LHC and corresponding to an integrated luminosity of 20.2 fb - 1 . The W W γ production cross-section is determined using a final state containing an electron, a muon, a photon, and neutrinos ( e ν μ ν γ ). Upper limits on the production cross-section of the e ν μ ν γ final state and the W W γ and W Z γ final states containing an electron or a muon, two jets, a photon, and a neutrino ( e ν j j γ or μ ν j j γ ) are also derived. The results are compared to the cross-sections predicted by the Standard Model at next-to-leading order in the strong-coupling constant. In addition, upper limits on the production cross-sections are derived in a fiducial region optimised for a search for new physics beyond the Standard Model. The results are interpreted in the context of anomalous quartic gauge couplings using an effective field theory. Confidence intervals at 95% confidence level are derived for the 14 coupling coefficients to which W W γ and W Z γ production are sensitive.
- Publikační typ
- časopisecké články MeSH
This paper presents a study of the production of WW or WZ boson pairs, with one W boson decaying to e ν or μ ν and one W or Z boson decaying hadronically. The analysis uses 20.2 fb - 1 of s = 8 TeV pp collision data, collected by the ATLAS detector at the Large Hadron Collider. Cross-sections for WW / WZ production are measured in high- p T fiducial regions defined close to the experimental event selection. The cross-section is measured for the case where the hadronically decaying boson is reconstructed as two resolved jets, and the case where it is reconstructed as a single jet. The transverse momentum distribution of the hadronically decaying boson is used to search for new physics. Observations are consistent with the Standard Model predictions, and 95% confidence intervals are calculated for parameters describing anomalous triple gauge-boson couplings.
- Publikační typ
- časopisecké články MeSH
The reconstruction of the signal from hadrons and jets emerging from the proton-proton collisions at the Large Hadron Collider (LHC) and entering the ATLAS calorimeters is based on a three-dimensional topological clustering of individual calorimeter cell signals. The cluster formation follows cell signal-significance patterns generated by electromagnetic and hadronic showers. In this, the clustering algorithm implicitly performs a topological noise suppression by removing cells with insignificant signals which are not in close proximity to cells with significant signals. The resulting topological cell clusters have shape and location information, which is exploited to apply a local energy calibration and corrections depending on the nature of the cluster. Topological cell clustering is established as a well-performing calorimeter signal definition for jet and missing transverse momentum reconstruction in ATLAS.
- Publikační typ
- časopisecké články MeSH
Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb[Formula: see text] of proton-proton collisions at a centre-of-mass energy of [Formula: see text], is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750-[Formula: see text] for dark-matter candidate masses below 230-[Formula: see text] at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale [Formula: see text] to be above [Formula: see text] at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to [Formula: see text] and the Z boson subsequently decays into neutrinos.
- Publikační typ
- časopisecké články MeSH
This paper presents a measurement of the polarisation of W bosons from [Formula: see text] decays, reconstructed in events with one high-[Formula: see text] lepton and at least four jets. Data from pp collisions at the LHC were collected at [Formula: see text] = 8 TeV and correspond to an integrated luminosity of 20.2 fb[Formula: see text]. The angle [Formula: see text] between the b-quark from the top quark decay and a direct W boson decay product in the W boson rest frame is sensitive to the W boson polarisation. Two different W decay products are used as polarisation analysers: the charged lepton and the down-type quark for the leptonically and hadronically decaying W boson, respectively. The most precise measurement of the W boson polarisation via the distribution of [Formula: see text] is obtained using the leptonic analyser and events in which at least two of the jets are tagged as b-quark jets. The fitted fractions of longitudinal, left- and right-handed polarisation states are [Formula: see text], [Formula: see text] and [Formula: see text], and are the most precisely measured W boson polarisation fractions to date. Limits on anomalous couplings of the Wtb vertex are set.
- Publikační typ
- časopisecké články MeSH