Most cited article - PubMed ID 25814907
Measurement of the centrality and pseudorapidity dependence of the integrated elliptic flow in lead-lead collisions at [Formula: see text] TeV with the ATLAS detector
The elliptic flow of prompt and non-prompt J / ψ was measured in the dimuon decay channel in Pb+Pb collisions at s NN = 5.02 TeV with an integrated luminosity of 0.42 nb - 1 with the ATLAS detector at the LHC. The prompt and non-prompt signals are separated using a two-dimensional simultaneous fit of the invariant mass and pseudo-proper decay time of the dimuon system from the J / ψ decay. The measurement is performed in the kinematic range of dimuon transverse momentum and rapidity 9 < p T < 30 GeV , | y | < 2 , and 0-60% collision centrality. The elliptic flow coefficient, v 2 , is evaluated relative to the event plane and the results are presented as a function of transverse momentum, rapidity and centrality. It is found that prompt and non-prompt J / ψ mesons have non-zero elliptic flow. Prompt J / ψ v 2 decreases as a function of p T , while for non-prompt J / ψ it is, with limited statistical significance, consistent with a flat behaviour over the studied kinematic region. There is no observed dependence on rapidity or centrality.
- Publication type
- Journal Article MeSH
The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton-proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon-nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction.
- Publication type
- Journal Article MeSH