Most cited article - PubMed ID 26162613
Sensitivity of PPI analysis to differences in noise reduction strategies
The study evaluates the efficacy of RETROICOR (Retrospective Image Correction) in mitigating physiological artifacts within multi-echo (ME) fMRI data. Two RETROICOR implementations were compared: applying corrections to individual echoes (RTC_ind) versus composite multi-echo data (RTC_comp). Data from 50 healthy participants were collected using diverse acquisition parameters, including multiband acceleration factors and varying flip angles, on a Siemens Prisma 3T scanner. Key metrics such as temporal signal-to-noise ratio (tSNR), signal fluctuation sensitivity (SFS), and variance of residuals demonstrated improved data quality in both RETROICOR models, particularly in moderately accelerated runs (multiband factors 4 and 6) with lower flip angles (45°). Differences between RTC_ind and RTC_comp were minimal, suggesting both methods are viable for practical applications. While the highest acceleration (multiband factor 8) degraded data quality, RETROICOR's compatibility with faster acquisition sequences was confirmed. These findings underscore the importance of optimizing acquisition parameters and noise correction techniques for reliable fMRI investigations.
- Keywords
- RETROICOR, denoising, fMRI, multi‐echo,
- MeSH
- Artifacts * MeSH
- Adult MeSH
- Humans MeSH
- Magnetic Resonance Imaging * methods MeSH
- Brain Mapping * methods MeSH
- Young Adult MeSH
- Brain * diagnostic imaging physiology MeSH
- Image Processing, Computer-Assisted * methods MeSH
- Signal-To-Noise Ratio MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
INTRODUCTION: According to the strong version of the orthographic depth hypothesis, in languages with transparent letter-sound mappings (shallow orthographies) the reading of both familiar words and unfamiliar nonwords may be accomplished by a sublexical pathway that relies on serial grapheme-to-phoneme conversion. However, in languages such as English characterized by inconsistent letter-sound relationships (deep orthographies), word reading is mediated by a lexical-semantic pathway that relies on mappings between word-specific orthographic, semantic, and phonological representations, whereas the sublexical pathway is used primarily to read nonwords. METHODS: In this study, we used functional magnetic resonance imaging to elucidate neural substrates of reading in Czech, a language characterized by a shallo worthography. Specifically, we contrasted patterns of brain activation and connectivity during word and nonword reading to determine whether similar or different neural mechanisms are involved. Neural correlates were measured as differences in simple whole-brain voxel-wise activation, and differences in visual word form area (VWFA) task-related connectivity were computed on the group level from data of 24 young subject. Trial-to-trial reading reaction times were used as a measure of task difficulty, and these effects were subtracted from the activation and connectivity effects in order to eliminate difference in cognitive effort which is naturally higher for nonwords and may mask the true lexicality effects. RESULTS: We observed pattern of activity well described in the literature mostly derived from data of English speakers - nonword reading (as compared to word reading) activated the sublexical pathway to a greater extent whereas word reading was associated with greater activation of semantic networks. VWFA connectivity analysis also revealed stronger connectivity to a component of the sublexical pathway - left inferior frontal gyrus (IFG), for nonword compared to word reading. DISCUSSION: These converging results suggest that the brain mechanism of skilled reading in shallow orthography languages are similar to those engaged when reading in languages with a deep orthography and are supported by a universal dual-pathway neural architecture.
- Keywords
- VWFA, fMRI, lexical-semantic, phonology, reading, shallow orthography, visual word form area,
- Publication type
- Journal Article MeSH
This study examines the impact of using different cerebrospinal fluid (CSF) and white matter (WM) nuisance signals for data-driven filtering of functional magnetic resonance imaging (fMRI) data as a cleanup method before analyzing intrinsic brain fluctuations. The routinely used temporal signal-to-noise ratio metric is inappropriate for assessing fMRI filtering suitability, as it evaluates only the reduction of data variability and does not assess the preservation of signals of interest. We defined a new metric that evaluates the preservation of selected neural signal correlates, and we compared its performance with a recently published signal-noise separation metric. These two methods provided converging evidence of the unfavorable impact of commonly used filtering approaches that exploit higher numbers of principal components from CSF and WM compartments (typically 5 + 5 for CSF and WM, respectively). When using only the principal components as nuisance signals, using a lower number of signals results in a better performance (i.e., 1 + 1 performed best). However, there was evidence that this routinely used approach consisting of 1 + 1 principal components may not be optimal for filtering resting-state (RS) fMRI data, especially when RETROICOR filtering is applied during the data preprocessing. The evaluation of task data indicated the appropriateness of 1 + 1 principal components, but when RETROICOR was applied, there was a change in the optimal filtering strategy. The suggested change for extracting WM (and also CSF in RETROICOR-corrected RS data) is using local signals instead of extracting signals from a large mask using principal component analysis.
- Keywords
- RETROICOR, cerebrospinal fluid, fMRI, filtering, functional connectivity, nuisance regression, principal component analysis, psychophysiological interactions, white matter,
- MeSH
- Artifacts * MeSH
- White Matter MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Brain Mapping methods MeSH
- Brain diagnostic imaging MeSH
- Cerebrospinal Fluid MeSH
- Image Processing, Computer-Assisted methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH