Nejvíce citovaný článek - PubMed ID 26236497
Aux/IAA proteins are well-known as key components of the nuclear auxin signaling pathway, repressing gene transcription when present and enabling gene activation upon their degradation. In this review, we explore the additional roles of Aux/IAA proteins in the known auxin perception pathways-the TIR1/AFBs nuclear as well as in the emerging cytoplasmic and apoplastic pathways. We summarize recent advances in understanding the regulation of Aux/IAA protein stability at the post-translational level, a critical factor in auxin-regulated transcriptional output. We further highlight the roles of auxin-nondegradable non-canonical Aux/IAAs in auxin-mediated transcription and their involvement in apoplastic auxin signalling. Additionally, we discuss the importance of Aux/IAAs for the adenylate cyclase activity of TIR1/AFB receptors and speculate on their involvement in the cytoplasmic auxin pathway. Using Arabidopsis root as a model, this work underscores the central role of Aux/IAA proteins in mediating auxin-driven developmental processes and environmental responses. Key questions for future research are proposed to further unravel the dynamic roles of Aux/IAAs in auxin signaling networks.
- MeSH
- Arabidopsis * metabolismus genetika MeSH
- F-box proteiny metabolismus genetika MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové * metabolismus MeSH
- proteiny huseníčku * metabolismus genetika MeSH
- receptory buněčného povrchu metabolismus genetika MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin * metabolismus MeSH
- rostlinné proteiny * metabolismus genetika MeSH
- signální transdukce MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- F-box proteiny MeSH
- kyseliny indoloctové * MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin * MeSH
- rostlinné proteiny * MeSH
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptional pathway. Among members of the TIR1/AFB auxin receptor family, AFB1 has a primary role in this rapid response. However, the unique features that confer this specific function have not been identified. Here we show that the N-terminal region of AFB1, including the F-box domain and residues that contribute to auxin binding, is essential and sufficient for its specific role in the rapid response. Substitution of the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localization and activity in rapid root growth inhibition by auxin. Importantly, the N-terminal region of AFB1 is indispensable for auxin-triggered calcium influx, which is a prerequisite for rapid root growth inhibition. Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes, suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1 may buffer the transcriptional auxin response, whereas it regulates rapid changes in cell growth that contribute to root gravitropism.
- Klíčová slova
- Arabidopsis, auxin signaling, calcium, gravitropism, lateral root,
- MeSH
- Arabidopsis * metabolismus MeSH
- cytosol metabolismus MeSH
- F-box proteiny * metabolismus MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové farmakologie metabolismus MeSH
- proteiny huseníčku * metabolismus MeSH
- receptory buněčného povrchu genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- regulátory růstu rostlin metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- F-box proteiny * MeSH
- kyseliny indoloctové MeSH
- proteiny huseníčku * MeSH
- receptory buněčného povrchu MeSH
- regulátory růstu rostlin MeSH
The phytohormone auxin triggers root growth inhibition within seconds via a non-transcriptional pathway. Among members of the TIR1/AFBs auxin receptor family, AFB1 has a primary role in this rapid response. However, the unique features that confer this specific function have not been identified. Here we show that the N-terminal region of AFB1, including the F-box domain and residues that contribute to auxin binding, are essential and sufficient for its specific role in the rapid response. Substitution of the N-terminal region of AFB1 with that of TIR1 disrupts its distinct cytoplasm-enriched localization and activity in rapid root growth inhibition. Importantly, the N-terminal region of AFB1 is indispensable for auxin-triggered calcium influx which is a prerequisite for rapid root growth inhibition. Furthermore, AFB1 negatively regulates lateral root formation and transcription of auxin-induced genes, suggesting that it plays an inhibitory role in canonical auxin signaling. These results suggest that AFB1 may buffer the transcriptional auxin response while it regulates rapid changes in cell growth that contribute to root gravitropism.
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Auxin regulates the transcription of auxin-responsive genes by the TIR1/AFBs-Aux/IAA-ARF signaling pathway, and in this way facilitates plant growth and development. However, rapid, nontranscriptional responses to auxin that cannot be explained by this pathway have been reported. In this review, we focus on several examples of rapid auxin responses: (1) the triggering of changes in plasma membrane potential in various plant species and tissues, (2) inhibition of root growth, which also correlates with membrane potential changes, cytosolic Ca2+ spikes, and a rise of apoplastic pH, (3) the influence on endomembrane trafficking of PIN proteins and other membrane cargoes, and (4) activation of ROPs (Rho of plants) and their downstream effectors such as the cytoskeleton or vesicle trafficking. In most cases, the signaling pathway triggering the response is poorly understood. A role for the TIR1/AFBs in rapid root growth regulation is emerging, as well as the involvement of transmembrane kinases (TMKs) in the activation of ROPs. We discuss similarities and differences among these rapid responses and focus on their physiological significance, which remains an enigma in most cases.
- MeSH
- endocytóza MeSH
- kořeny rostlin růst a vývoj MeSH
- kyseliny indoloctové metabolismus MeSH
- membránové potenciály MeSH
- proteiny vázající GTP metabolismus MeSH
- receptory buněčného povrchu metabolismus MeSH
- rostlinné proteiny metabolismus MeSH
- rostliny metabolismus MeSH
- vápník metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- auxin receptor, plant MeSH Prohlížeč
- kyseliny indoloctové MeSH
- proteiny vázající GTP MeSH
- receptory buněčného povrchu MeSH
- rostlinné proteiny MeSH
- vápník MeSH
Polar subcellular localization of the PIN exporters of the phytohormone auxin is a key determinant of directional, intercellular auxin transport and thus a central topic of both plant cell and developmental biology. Arabidopsis mutants lacking PID, a kinase that phosphorylates PINs, or the MAB4/MEL proteins of unknown molecular function display PIN polarity defects and phenocopy pin mutants, but mechanistic insights into how these factors convey PIN polarity are missing. Here, by combining protein biochemistry with quantitative live-cell imaging, we demonstrate that PINs, MAB4/MELs, and AGC kinases interact in the same complex at the plasma membrane. MAB4/MELs are recruited to the plasma membrane by the PINs and in concert with the AGC kinases maintain PIN polarity through limiting lateral diffusion-based escape of PINs from the polar domain. The PIN-MAB4/MEL-PID protein complex has self-reinforcing properties thanks to positive feedback between AGC kinase-mediated PIN phosphorylation and MAB4/MEL recruitment. We thus uncover the molecular mechanism by which AGC kinases and MAB4/MEL proteins regulate PIN localization and plant development.
- Klíčová slova
- Arabidopsis, cell polarity, lateral diffusion, plant development, polar auxin transport, positive feedback, protein phosphorylation,
- MeSH
- Arabidopsis * genetika metabolismus MeSH
- biologický transport MeSH
- kořeny rostlin metabolismus MeSH
- kyseliny indoloctové MeSH
- membránové transportní proteiny genetika MeSH
- polarita buněk MeSH
- proteiny huseníčku * genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- rostlinné buňky metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH
- membránové transportní proteiny MeSH
- proteiny huseníčku * MeSH
- Klíčová slova
- AUX/IAA transcriptional regulators, Arabidopsis, Auxin F-Box (AFB), Auxin Response Factors (ARFs), Transport Inhibitor Response 1 (TIR1), auxin, canonical auxin signalling pathway, indole-3-acetic acid (IAA), kinase, receptor, TIR1/AFB co-receptor, non-canonical auxin signalling pathway, ubiquitination,
- MeSH
- fyziologie rostlin * MeSH
- kyseliny indoloctové metabolismus MeSH
- signální transdukce fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kyseliny indoloctové MeSH