Nejvíce citovaný článek - PubMed ID 26302842
The field of nanotechnology has the mysterious capacity to reform every subject it touches. Nanotechnology advancements have already altered a variety of scientific and industrial fields. Nanoparticles (NPs) with sizes ranging from 1 to 100 nm (nm) are of great scientific and commercial interest. Their functions and characteristics differ significantly from those of bulk metal. Commercial quantities of NPs are synthesized using chemical or physical methods. The use of the physical and chemical approaches remained popular for many years; however, the recognition of their hazardous effects on human well-being and conditions influenced serious world perspectives for the researchers. There is a growing need in this field for simple, non-toxic, clean, and environmentally safe nanoparticle production methods to reduce environmental impact and waste and increase energy productivity. Microbial nanotechnology is relatively a new field. Using various microorganisms, a wide range of nanoparticles with well-defined chemical composition, morphology, and size have been synthesized, and their applications in a wide range of cutting-edge technological areas have been investigated. Green synthesis of the nanoparticles is cost-efficient and requires low maintenance. The present review highlights the synthesis of the nanoparticles by different microbes, their characterization, and their biotechnological potential. It further deals with the applications in biomedical, food, and textile industries as well as its role in biosensing, waste recycling, and biofuel production.
- Klíčová slova
- Biofuels, Food industry, Microbial nanotechnology, Omics, Waste management,
- MeSH
- Bacteria metabolismus MeSH
- biotechnologie trendy MeSH
- nanočástice * chemie MeSH
- nanotechnologie * trendy MeSH
- zemědělství * metody MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Fungi contain species with a plethora of ways of adapting to life in nature. Consequently, they produce large amounts of diverse biomolecules that can be generated on a large scale and in an affordable manner. This makes fungi an attractive alternative for many biotechnological processes. Ascomycetes and basidiomycetes are the most commonly used fungi for synthesis of metal-containing nanoparticles (NPs). The advantages of NPs created by fungi include the use of non-toxic fungus-produced biochemicals, energy efficiency, ambient temperature, pressure conditions, and the ability to control and tune the crystallinity, shape, and size of the NPs. Furthermore, the presence of biomolecules might serve a dual function as agents in NP formation and also capping that can tailor the (bio)activity of subsequent NPs. This review summarizes and reviews the synthesis of different metal, metal oxide, metal sulfide, and other metal-based NPs mediated by reactive media derived from various species. The phyla ascomycetes and basidiomycetes are presented separately. Moreover, the practical application of NP mycosynthesis, particularly in the fields of biomedicine, catalysis, biosensing, mosquito control, and precision agriculture as nanofertilizers and nanopesticides, has been studied so far. Finally, an outlook is provided, and future recommendations are proposed with an emphasis on the areas where mycosynthesized NPs have greater potential than NPs synthesized using physicochemical approaches. A deeper investigation of the mechanisms of NP formation in fungi-based media is needed, as is a focus on the transfer of NP mycosynthesis from the laboratory to large-scale production and application.
- Klíčová slova
- antimicrobial agent, biomedicine, catalyst, extracellular extracts, fungal synthesis, intracellular extracts, nanobiosensors, nanofertilizer, precision agriculture,
- MeSH
- Ascomycota * MeSH
- Basidiomycota * MeSH
- kovové nanočástice * chemie MeSH
- kovy MeSH
- oxidy MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- kovy MeSH
- oxidy MeSH
In the 21st century, nanomaterials play an increasingly important role in our lives with applications in many sectors, including agriculture, biomedicine, and biosensors. Over the last two decades, extensive research has been conducted to find ways to synthesise nanoparticles (NPs) via mediation with fungi or fungal extracts. Mycosynthesis can potentially be an energy-efficient, highly adjustable, environmentally benign alternative to conventional physico-chemical procedures. This review investigates the role of metal toxicity in fungi on cell growth and biochemical levels, and how their strategies of resistance, i.e., metal chelation, biomineral formation, biosorption, bioaccumulation, compartmentalisation, and efflux of metals from cells, contribute to the synthesis of metal-containing NPs used in different applications, e.g., biomedical, antimicrobial, catalytic, biosensing, and precision agriculture. The role of different synthesis conditions, including that of fungal biomolecules serving as nucleation centres or templates for NP synthesis, reducing agents, or capping agents in the synthesis process, is also discussed. The authors believe that future studies need to focus on the mechanism of NP synthesis, as well as on the influence of such conditions as pH, temperature, biomass, the concentration of the precursors, and volume of the fungal extracts on the efficiency of the mycosynthesis of NPs.
- Klíčová slova
- biomolecule, biosynthesis, fungus, green synthesis, metal oxide nanoparticle, metallic nanoparticle, nanomaterial,
- MeSH
- bioakumulace MeSH
- biologický transport MeSH
- katalýza MeSH
- kovové nanočástice * MeSH
- redukční činidla MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- redukční činidla MeSH
It is generally recognized that the stability of nanoparticles (NPs) has a great impact on their potential biological applications. Despite this, very few studies have investigated the change in toxicity of NPs over time but none has studied the periodic physicochemical changes contributing to it. To address this, we analyzed the effects of long-term storage on the physicochemical changes of green synthesized silver nanoparticles (AgNPs) that directly influences their antimicrobial durability. Light-induced slow synthesis of AgNPs was carried out using Saraca asoca aqueous leaf extract. The synthesis was optimized with respect to parameters known to play a major role in the long-term stability of AgNPs: pH, temperature, light exposure time, AgNO3 concentration, extract proportion in the reaction mixture and storage conditions. Freshly synthesized AgNPs were characterized and then stored under optimized conditions. UV-vis spectrophotometry, AAS, conventional TEM and HR-TEM along with EDX spectroscopy were used at regular intervals to test the physicochemical properties that influence their long-term stability. Broth dilution assay was used to test antimicrobial activity of AgNPs against Escherichia coli and Staphylococcus aureus. Under dark storage conditions at room temperature, the AgNPs exhibited excellent stability with very good dispersity, throughout the study period of 18 months, despite the particles undergoing physicochemical changes in largescale. AgNPs exhibited sufficient antimicrobial activity against both strains tested. Due to the stronger stabilizing effect of the extract, we observed the lowest inhibition of E. coli and S. aureus by the freshly synthesized and 15 day old AgNPs; however, the inhibition rate escalated after a month and the highest rate of inhibition was observed with the particles between 2 months to 6 months of storage. After 6 months, we observed the particles losing their antimicrobial potential gradually, that lasted throughout the rest of our study period. This observation was in accord with the physicochemical changes that AgNPs were undergoing with time. By deepening our understanding of the changes in the physicochemical properties of green synthesized AgNPs over time, this study contributes to the development of more effective, durable, and potent AgNPs.
- Publikační typ
- časopisecké články MeSH
In today's time, nanotechnology is being utilized to develop efficient products in the cosmetic and pharmaceutical industries. The application of nanotechnology in transforming bioactive material into nanoscale products substantially improves their biocompatibility and enhances their effectiveness, even when used in lower quantities. There is a significant global market potential for these nanoparticles because of which research teams around the world are interested in the advancements in nanotechnology. These recent advances have shown that fungi can synthesize metallic nanoparticles via extra- and intracellular mechanisms. Moreover, the chemical and physical properties of novel metallic nanoparticles synthesised by fungi are improved by regulating the surface chemistry, size, and surface morphology of the nanoparticles. Compared to chemical synthesis, the green synthesis of nanoparticles offers a safe and sustainable approach for developing nanoparticles. Biosynthesised nanoparticles can potentially enhance the bioactivities of different cellular fractions, such as plant extracts, fungal extracts, and metabolites. The nanoparticles synthesised by fungi offer a wide range of applications. Recently, the biosynthesis of nanoparticles using fungi has become popular, and various ways are being explored to maximize nanoparticles synthesis. This manuscript reviews the characteristics and applications of the nanoparticles synthesised using the different taxa of fungi. The key focus is given to the applications of these nanoparticles in medicine and cosmetology.
- Klíčová slova
- biological application, biosynthesis, fungi, nanoparticles, nanotechnology,
- MeSH
- houby MeSH
- kovové nanočástice * chemie MeSH
- mykologie MeSH
- nanotechnologie MeSH
- technologie zelené chemie * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Noble metals have played an integral part in human history for centuries; however, their integration with recent advances in nanotechnology and material sciences have provided new research opportunities in both academia and industry, which has resulted in a new array of advanced applications, including medical ones. Noble metal nanoparticles (NMNPs) have been of great importance in the field of biomedicine over the past few decades due to their importance in personalized healthcare and diagnostics. In particular, platinum, gold and silver nanoparticles have achieved the most dominant spot in the list, thanks to a very diverse range of industrial applications, including biomedical ones such as antimicrobial and antiviral agents, diagnostics, drug carriers and imaging probes. In particular, their superior resistance to extreme conditions of corrosion and oxidation is highly appreciated. Notably, in the past two decades there has been a tremendous advancement in the development of new strategies of more cost-effective and robust NMNP synthesis methods that provide materials with highly tunable physicochemical, optical and thermal properties, and biochemical functionalities. As a result, new advanced hybrid NMNPs with polymer, graphene, carbon nanotubes, quantum dots and core-shell systems have been developed with even more enhanced physicochemical characteristics that has led to exceptional diagnostic and therapeutic applications. In this review, we aim to summarize current advances in the synthesis of NMNPs (Au, Ag and Pt).
- Klíčová slova
- Biomedical applications, Diagnostics, Noble metal nanoparticles, Personal healthcare, Therapeutics,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH