Nejvíce citovaný článek - PubMed ID 26335588
Applications like drug development need simple and streamlined methods to process samples from 96-well cell culture plates for gene expression measurements. Unfortunately, current options are expensive for such processing. Therefore, our aim was to develop a method that would allow streamlined analysis of mRNA from 96-well cell culture plates while being relatively cheap and simple. We developed a method based on the qPCR 'Cells-to-cDNA' approach and validated it against commercially available kits using the same approach or spin columns-based RNA purification. For this purpose, we conducted a series of comparisons of gene expression from peripheral blood mononuclear cells, SK-HEP-1 and U-87 cell cultures in 96-well plates. Our final method involved lysing cells with 25-100 µl solution of 0.5% SDS, 10 mM DTT, 1 mg ml-1 proteinase K dissolved in water, 1 h incubation at 50°C, followed by proteinase K inactivation at 90°C for 5 min and lysate neutralization with 1 : 1 dilution by 20% Tween 20 solution. Reverse transcription and qPCR were carried out using standard methods. This method showed a mean reduction of Ct ± s.d. value by 2.4 ± 1.3 compared with the 'Cells-to-cDNA' kit and by 1.4 ± 0.5 compared with the RNA purification kit with lower variability.
- Klíčová slova
- RNA isolation, cell lysis, in vitro, mRNA, peripheral blood mononuclear cells, proteinase k, qPCR,
- MeSH
- analýza nákladů a výnosů MeSH
- buněčné kultury metody ekonomika MeSH
- komplementární DNA * genetika MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- leukocyty mononukleární cytologie metabolismus MeSH
- lidé MeSH
- messenger RNA genetika metabolismus MeSH
- nádorové buněčné linie MeSH
- stanovení celkové genové exprese metody ekonomika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- komplementární DNA * MeSH
- messenger RNA MeSH
Maintenance of long-term lung allograft health in lung transplant recipients (LTRs) requires a fine balancing act between providing sufficient immunosuppression to reduce the risk of rejection whilst at the same time not over-immunosuppressing individuals and exposing them to the myriad of immunosuppressant drug side-effects that can cause morbidity and mortality. At present, lung transplant physicians only have limited and rather blunt tools available to assist them with this task. Although therapeutic drug monitoring provides clinically useful information about single time point and longitudinal exposure of LTRs to immunosuppressants, it lacks precision in determining the functional level of immunosuppression that an individual is experiencing. There is a significant gap in our ability to monitor lung allograft health and therefore tailor optimal personalised immunosuppression regimens. Molecular diagnostics performed on blood, bronchoalveolar lavage or lung tissue that can detect early signs of subclinical allograft injury, differentiate rejection from infection or distinguish cellular from humoral rejection could offer clinicians powerful tools in protecting lung allograft health. In this review, we look at the current evidence behind molecular monitoring in lung transplantation and ask if it is ready for routine clinical use. Although donor-derived cell-free DNA and tissue transcriptomics appear to be the techniques with the most immediate clinical potential, more robust data are required on their performance and additional clinical value beyond standard of care.
- MeSH
- alografty MeSH
- imunosupresiva terapeutické užití MeSH
- lidé MeSH
- plíce * chirurgie MeSH
- rejekce štěpu diagnóza genetika prevence a kontrola MeSH
- transplantace plic * škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- imunosupresiva MeSH