Most cited article - PubMed ID 26472935
Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector
A study of the anomalous couplings of the Higgs boson to vector bosons, including CP -violation effects, has been conducted using its production and decay in the WW channel. This analysis is performed on proton-proton collision data collected with the CMS detector at the CERN LHC during 2016-2018 at a center-of-mass energy of 13 TeV, and corresponds to an integrated luminosity of 138 fb - 1 . The different-flavor dilepton ( e μ ) final state is analyzed, with dedicated categories targeting gluon fusion, electroweak vector boson fusion, and associated production with a W or Z boson. Kinematic information from associated jets is combined using matrix element techniques to increase the sensitivity to anomalous effects at the production vertex. A simultaneous measurement of four Higgs boson couplings to electroweak vector bosons is performed in the framework of a standard model effective field theory. All measurements are consistent with the expectations for the standard model Higgs boson and constraints are set on the fractional contribution of the anomalous couplings to the Higgs boson production cross section.
- Publication type
- Journal Article MeSH
Searches for non-resonant and resonant Higgs boson pair production are performed in the γ γ W W ∗ channel with the final state of γ γ ℓ ν j j using 36.1 fb - 1 of proton-proton collision data recorded at a centre-of-mass energy of s = 13 TeV by the ATLAS detector at the Large Hadron Collider. No significant deviation from the Standard Model prediction is observed. A 95% confidence-level observed upper limit of 7.7 pb is set on the cross section for non-resonant production, while the expected limit is 5.4 pb. A search for a narrow-width resonance X decaying to a pair of Standard Model Higgs bosons HH is performed with the same set of data, and the observed upper limits on σ ( p p → X ) × B ( X → H H ) range between 40.0 and 6.1 pb for masses of the resonance between 260 and 500 GeV, while the expected limits range between 17.6 and 4.4 pb. When deriving the limits above, the Standard Model branching ratios of the H → γ γ and H → W W ∗ are assumed.
- Publication type
- Journal Article MeSH
A search for neutral heavy resonances is performed in the W W → e ν μ ν decay channel using pp collision data corresponding to an integrated luminosity of 36.1 fb - 1 , collected at a centre-of-mass energy of 13 TeV by the ATLAS detector at the Large Hadron Collider. No evidence of such heavy resonances is found. In the search for production via the quark-antiquark annihilation or gluon-gluon fusion process, upper limits on σ X × B ( X → W W ) as a function of the resonance mass are obtained in the mass range between 200 GeV and up to 5 TeV for various benchmark models: a Higgs-like scalar in different width scenarios, a two-Higgs-doublet model, a heavy vector triplet model, and a warped extra dimensions model. In the vector-boson fusion process, constraints are also obtained on these resonances, as well as on a Higgs boson in the Georgi-Machacek model and a heavy tensor particle coupling only to gauge bosons.
- Publication type
- Journal Article MeSH
A test of CP invariance in Higgs boson production via vector-boson fusion using the method of the Optimal Observable is presented. The analysis exploits the decay mode of the Higgs boson into a pair of [Formula: see text] leptons and is based on 20.3 [Formula: see text] of proton-proton collision data at [Formula: see text] = 8 [Formula: see text] collected by the ATLAS experiment at the LHC. Contributions from CP-violating interactions between the Higgs boson and electroweak gauge bosons are described in an effective field theory framework, in which the strength of CP violation is governed by a single parameter [Formula: see text]. The mean values and distributions of CP-odd observables agree with the expectation in the Standard Model and show no sign of CP violation. The CP-mixing parameter [Formula: see text] is constrained to the interval [Formula: see text] at 68% confidence level, consistent with the Standard Model expectation of [Formula: see text].
- Publication type
- Journal Article MeSH
A search for neutral Higgs bosons of the minimal supersymmetric standard model (MSSM) and for a heavneutral [Formula: see text] boson is performed using a data sample corresponding to an integrated luminosity of 3.2 fb[Formula: see text] from proton-proton collisions at [Formula: see text] [Formula: see text] recorded by the ATLAS detector at the LHC. The heavy resonance is assumed to decay to a [Formula: see text] pair with at least one [Formula: see text] lepton decaying to final states with hadrons and a neutrino. The search is performed in the mass range of 0.2-1.2 [Formula: see text] for the MSSM neutral Higgs bosons and 0.5-2.5 [Formula: see text] for the heavy neutral [Formula: see text] boson. The data are in good agreement with the background predicted by the Standard Model. The results are interpreted in MSSM and [Formula: see text] benchmark scenarios. The most stringent constraints on the MSSM [Formula: see text]-[Formula: see text] space exclude at 95 % confidence level (CL) [Formula: see text] for [Formula: see text] [Formula: see text] in the [Formula: see text] MSSM scenario. For the Sequential Standard Model, a [Formula: see text] mass up to 1.90 [Formula: see text] is excluded at 95 % CL and masses up to 1.82-2.17 [Formula: see text] are excluded for a [Formula: see text] of the strong flavour model.
- Publication type
- Journal Article MeSH
This article documents the performance of the ATLAS muon identification and reconstruction using the LHC dataset recorded at [Formula: see text] TeV in 2015. Using a large sample of [Formula: see text] and [Formula: see text] decays from 3.2 fb[Formula: see text] of pp collision data, measurements of the reconstruction efficiency, as well as of the momentum scale and resolution, are presented and compared to Monte Carlo simulations. The reconstruction efficiency is measured to be close to [Formula: see text] over most of the covered phase space ([Formula: see text] and [Formula: see text] GeV). The isolation efficiency varies between 93 and [Formula: see text] depending on the selection applied and on the momentum of the muon. Both efficiencies are well reproduced in simulation. In the central region of the detector, the momentum resolution is measured to be [Formula: see text] ([Formula: see text]) for muons from [Formula: see text] ([Formula: see text]) decays, and the momentum scale is known with an uncertainty of [Formula: see text]. In the region [Formula: see text], the [Formula: see text] resolution for muons from [Formula: see text] decays is [Formula: see text] while the precision of the momentum scale for low-[Formula: see text] muons from [Formula: see text] decays is about [Formula: see text].
- Publication type
- Journal Article MeSH
Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the [Formula: see text] and [Formula: see text] decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 [Formula: see text] at [Formula: see text] TeV and 20.3 [Formula: see text] at [Formula: see text] TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is [Formula: see text]. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.
- Publication type
- Journal Article MeSH