Nejvíce citovaný článek - PubMed ID 26573519
BACKGROUND: In Europe, avian schistosomes of the genus Trichobilharzia are the most common etiological agents involved in human cercarial dermatitis (swimmer's itch). Manifested by a skin rash, the condition is caused by an allergic reaction to cercariae of nonhuman schistosomes. Humans are an accidental host in this parasite's life cycle, while water snails are the intermediate, and waterfowl are the final hosts. The study aimed to conduct a molecular and phylogenetic analysis of Trichobilharzia species occurring in recreational waters in North-Eastern Poland. METHODOLOGY: The study area covered three water bodies (Lake Skanda, Lake Ukiel, and Lake Tyrsko) over the summer of 2021. In total, 747 pulmonate freshwater snails (Radix spp., Lymnaea stagnalis) were collected. Each snail was subjected to 1-2 h of light stimulation to induce cercarial expulsion. The phylogenetic analyses of furcocercariae were based on the partial sequence of the ITS region (ITS1, 5.8S rDNA, ITS2 and 28SrDNA). For Radix spp. phylogenetic analyses were based on the ITS-2 region. RESULTS: The prevalence of the Trichobilharzia species infection in snails was 0.5%. Two out of 478 (0.4%) L. stagnaliswere found to be infected with Trichobilharzia szidati. Moreover, two out of 269 (0.7%) snails of the genus Radix were positive for schistosome cercariae. Both snails were identified as Radix auricularia. One of them was infected with Trichobilharzia franki and the other with Trichobilharzia sp. CONCLUSIONS: Molecular identification of avian schistosome species, both at the intermediate and definitive hosts level, constitutes an important source of information on a potential threat and prognosis of local swimmer's itch occurrence, and helps to determine species diversity in a particular area.
- Klíčová slova
- Avian schistosomes, Cercariae, Cercarial dermatitis, Trichobilharzia,
- MeSH
- DNA helmintů genetika MeSH
- fylogeneze * MeSH
- hlemýždi parazitologie MeSH
- infekce červy třídy Trematoda parazitologie veterinární epidemiologie MeSH
- jezera parazitologie MeSH
- lidé MeSH
- Schistosomatidae * genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko epidemiologie MeSH
- Názvy látek
- DNA helmintů MeSH
Cercarial dermatitis (CD) is an allergic skin disease that rises in consequence of infection by invasive stages (cercariae) of trematodes of the family Schistosomatidae. CD has been considered a re-emerging disease, human cases have been reported from all continents, and tourism-threatening outbreaks occur even in frequented recreational areas. Although the symptoms of CD are generally known, the data on immune response in human patients are sporadic and incomprehensive. In the present study, we attempted to correlate the symptoms, personal history, and time course of CD in human patients with differential cell counts, dynamics of selected cytokines, and dynamics and quality of antibody response. By a systematic follow-up, we obtained a uniquely complex dataset from ten persons accidentally and concurrently infected by the same parasite species in the same locality. The onset of CD was significantly faster, and the symptoms were heavier in participants with a history of CD if compared to naive ones, who, however, also developed some of the symptoms. The repeatedly infected persons had elevated proportion of eosinophils 1 week post exposure (p.e.) and a stronger specific IgG but not IgM response, whereas specific IgE response was not observed. Increased serum levels of IL-4 occurred 1 and 3 week(s) p.e. in all participants. There was high variability in individual immunoblot patterns of IgG response, and no antigen with a universal diagnostic potential was confirmed. The presented analyses suggested that a complex approach can improve the accuracy of the diagnosis of CD, but component data should be interpreted carefully.
- Klíčová slova
- Allergy, Diagnosis, Immunity, Schistosome, Skin, Trichobilharzia,
- MeSH
- dermatitida imunologie parazitologie MeSH
- dospělí MeSH
- epidemický výskyt choroby MeSH
- imunoglobulin E krev MeSH
- imunoglobulin G krev MeSH
- imunoglobulin M krev MeSH
- infekce červy třídy Trematoda diagnóza imunologie parazitologie MeSH
- interleukin-4 krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- následné studie MeSH
- protilátky protozoální krev MeSH
- průzkumy a dotazníky MeSH
- rybníky parazitologie MeSH
- Schistosomatidae imunologie MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- IL4 protein, human MeSH Prohlížeč
- imunoglobulin E MeSH
- imunoglobulin G MeSH
- imunoglobulin M MeSH
- interleukin-4 MeSH
- protilátky protozoální MeSH
BACKGROUND: Helminth neuroinfections represent a serious health problem, but host immune mechanisms in the nervous tissue often remain undiscovered. This study aims at in vitro characterization of the response of murine astrocytes and microglia exposed to Trichobilharzia regenti which is a neuropathogenic schistosome migrating through the central nervous system of vertebrate hosts. Trichobilharzia regenti infects birds and mammals in which it may cause severe neuromotor impairment. This study was focused on astrocytes and microglia as these are immunocompetent cells of the nervous tissue and their activation was recently observed in T. regenti-infected mice. RESULTS: Primary astrocytes and microglia were exposed to several stimulants of T. regenti origin. Living schistosomulum-like stages caused increased secretion of IL-6 in astrocyte cultures, but no changes in nitric oxide (NO) production were noticed. Nevertheless, elevated parasite mortality was observed in these cultures. Soluble fraction of the homogenate from schistosomulum-like stages stimulated NO production by both astrocytes and microglia, and IL-6 and TNF-α secretion in astrocyte cultures. Similarly, recombinant cathepsins B1.1 and B2 triggered IL-6 and TNF-α release in astrocyte and microglia cultures, and NO production in astrocyte cultures. Stimulants had no effect on production of anti-inflammatory cytokines IL-10 or TGF-β1. CONCLUSIONS: Both astrocytes and microglia are capable of production of NO and proinflammatory cytokines IL-6 and TNF-α following in vitro exposure to various stimulants of T. regenti origin. Astrocytes might be involved in triggering the tissue inflammation in the early phase of T. regenti infection and are proposed to participate in destruction of migrating schistosomula. However, NO is not the major factor responsible for parasite damage. Both astrocytes and microglia can be responsible for the nervous tissue pathology and maintaining the ongoing inflammation since they are a source of NO and proinflammatory cytokines which are released after exposure to parasite antigens.
- Klíčová slova
- Anti-inflammatory cytokines, Astrocytes, Avian schistosome, Cathepsin B, Microglia, Neuroinfection, Nitric oxide, Proinflammatory cytokines, Trichobilharzia regenti,
- MeSH
- astrocyty imunologie parazitologie MeSH
- interleukin-6 metabolismus MeSH
- kultivované buňky MeSH
- myši MeSH
- neuroglie imunologie parazitologie MeSH
- oxid dusnatý metabolismus MeSH
- Schistosomatidae imunologie MeSH
- TNF-alfa metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- interleukin-6, mouse MeSH Prohlížeč
- interleukin-6 MeSH
- oxid dusnatý MeSH
- TNF-alfa MeSH