Nejvíce citovaný článek - PubMed ID 26821703
The SQM/COSMO filter: reliable native pose identification based on the quantum-mechanical description of protein-ligand interactions and implicit COSMO solvation
The use of quantum mechanical potentials in protein-ligand affinity prediction is becoming increasingly feasible with growing computational power. To move forward, validation of such potentials on real-world challenges is necessary. To this end, we have collated an extensive set of over a thousand galectin inhibitors with known affinities and docked them into galectin-3. The docked poses were then used to systematically evaluate several modern force fields and semiempirical quantum mechanical (SQM) methods up to the tight-binding level under consistent computational workflow. Implicit solvation models available with the tested methods were used to simulate solvation effects. Overall, the best methods in this study achieved a Pearson correlation of 0.7-0.8 between the computed and experimental affinities. There were differences between the tested methods in their ability to rank ligands across the entire ligand set as well as within subsets of structurally similar ligands. A major discrepancy was observed for a subset of ligands that bind to the protein via a halogen bond, which was clearly challenging for all the tested methods. The inclusion of an entropic term calculated by the rigid-rotor-harmonic-oscillator approximation at SQM level slightly worsened correlation with experiment but brought the calculated affinities closer to experimental values. We also found that the success of the prediction strongly depended on the solvation model. Furthermore, we provide an in-depth analysis of the individual energy terms and their effect on the overall prediction accuracy.
- MeSH
- galektiny * metabolismus chemie antagonisté a inhibitory MeSH
- kvantová teorie * MeSH
- ligandy MeSH
- simulace molekulového dockingu MeSH
- vazba proteinů MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- galektiny * MeSH
- ligandy MeSH
General and reliable description of structures and energetics in protein-ligand (PL) binding using the docking/scoring methodology has until now been elusive. We address this urgent deficiency of scoring functions (SFs) by the systematic development of corrected semiempirical quantum mechanical (SQM) methods, which correctly describe all types of noncovalent interactions and are fast enough to treat systems of thousands of atoms. Two most accurate SQM methods, PM6-D3H4X and SCC-DFTB3-D3H4X, are coupled with the conductor-like screening model (COSMO) implicit solvation model in so-called "SQM/COSMO" SFs and have shown unique recognition of native ligand poses in cognate docking in four challenging PL systems, including metalloprotein. Here, we apply the two SQM/COSMO SFs to 17 diverse PL complexes and compare their performance with four widely used classical SFs (Glide XP, AutoDock4, AutoDock Vina, and UCSF Dock). We observe superior performance of the SQM/COSMO SFs and identify challenging systems. This method, due to its generality, comparability across the chemical space, and lack of need for any system-specific parameters, gives promise of becoming, after comprehensive large-scale testing in the near future, a useful computational tool in structure-based drug design and serving as a reference method for the development of other SFs.
- Publikační typ
- časopisecké články MeSH