Nejvíce citovaný článek - PubMed ID 27840291
Activation of autophagy and PPARγ protect colon cancer cells against apoptosis induced by interactive effects of butyrate and DHA in a cell type-dependent manner: The role of cell differentiation
Identification of changes of phospholipid (PL) composition occurring during colorectal cancer (CRC) development may help us to better understand their roles in CRC cells. Here, we used LC-MS/MS-based PL profiling of cell lines derived from normal colon mucosa, or isolated at distinct stages of CRC development, in order to study alterations of PL species potentially linked with cell transformation. We found that a detailed evaluation of phosphatidylinositol (PI) and phosphatidylserine (PS) classes allowed us to cluster the studied epithelial cell lines according to their origin: i) cells originally derived from normal colon tissue (NCM460, FHC); ii) cell lines derived from colon adenoma or less advanced differentiating adenocarcinoma cells (AA/C1, HT-29); or, iii) cells obtained by in vitro transformation of adenoma cells and advanced colon adenocarcinoma cells (HCT-116, AA/C1/SB10, SW480, SW620). Although we tentatively identified several PS and PI species contributing to cell line clustering, full PI and PS profiles appeared to be a key to the successful cell line discrimination. In parallel, we compared PL composition of primary epithelial (EpCAM-positive) cells, isolated from tumor and adjacent non-tumor tissues of colon cancer patients, with PL profiles of cell lines derived from normal colon mucosa (NCM460) and from colon adenocarcinoma (HCT-116, SW480) cells, respectively. In general, higher total levels of all PL classes were observed in tumor cells. The overall PL profiles of the cell lines, when compared with the respective patient-derived cells, exhibited similarities. Nevertheless, there were also some notable differences in levels of individual PL species. This indicated that epithelial cell lines, derived either from normal colon tissue or from CRC cells, could be employed as models for functional lipidomic analyses of colon cells, albeit with some caution. The biological significance of the observed PL deregulation, or their potential links with specific CRC stages, deserve further investigation.
- MeSH
- analýza hlavních komponent MeSH
- epitelové buňky metabolismus patologie MeSH
- fosfolipidy metabolismus MeSH
- kolon patologie MeSH
- lidé MeSH
- lipidomika * MeSH
- nádorové buněčné linie MeSH
- nádory tračníku metabolismus patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fosfolipidy MeSH
The mechanisms contributing to toxic effects of airborne lower-chlorinated PCB congeners (LC-PCBs) remain poorly characterized. We evaluated in vitro toxicities of environmental LC-PCBs found in both indoor and outdoor air (PCB 4, 8, 11, 18, 28 and 31), and selected hydroxylated metabolites of PCB 8, 11 and 18, using reporter gene assays, as well as other functional cellular bioassays. We focused on processes linked with endocrine disruption, tumor promotion and/or regulation of transcription factors controlling metabolism of both endogenous compounds and xenobiotics. The tested LC-PCBs were found to be mostly efficient anti-androgenic (within nanomolar - micromolar range) and estrogenic (at micromolar concentrations) compounds, as well as inhibitors of gap junctional intercellular communication (GJIC) at micromolar concentrations. PCB 8, 28 and 31 were found to partially inhibit the aryl hydrocarbon receptor (AhR)-mediated activity. The tested LC-PCBs were also partial constitutive androstane receptor (CAR) and pregnane X receptor (PXR) agonists, with PCB 4, 8 and 18 being the most active compounds. They were inactive towards other nuclear receptors, such as vitamin D receptor, thyroid receptor α, glucocorticoid receptor or peroxisome proliferator-activated receptor γ. We found that only PCB 8 contributed to generation of oxidative stress, while all tested LC-PCBs induced arachidonic acid release (albeit without further modulations of arachidonic acid metabolism) in human lung epithelial cells. Importantly, estrogenic effects of hydroxylated (OH-PCB) metabolites of LC-PCBs (4-OH-PCB 8, 4-OH-PCB 11 and 4'-OH-PCB 18) were higher than those of the parent PCBs, while their other toxic effects were only slightly altered or suppressed. This suggested that metabolism may alter toxicity profiles of LC-PCBs in a receptor-specific manner. In summary, anti-androgenic and estrogenic activities, acute inhibition of GJIC and suppression of the AhR-mediated activity were found to be the most relevant modes of action of airborne LC-PCBs, although they partially affected also additional cellular targets.
- Klíčová slova
- Airborne polychlorinated biphenyls, Endocrine disruption, HydroxyLated PCBs, Metabolism of xenobiotics, Tumor promotion,
- MeSH
- buněčné linie MeSH
- endokrinní disruptory metabolismus toxicita MeSH
- epitelové buňky účinky léků MeSH
- hydroxylace MeSH
- konstitutivní androstanový receptor MeSH
- látky znečišťující vzduch toxicita MeSH
- lidé MeSH
- nádory metabolismus MeSH
- polychlorované bifenyly metabolismus toxicita MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- signální transdukce účinky léků MeSH
- steroidní receptory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- endokrinní disruptory MeSH
- konstitutivní androstanový receptor MeSH
- látky znečišťující vzduch MeSH
- polychlorované bifenyly MeSH
- pregnanový X receptor MeSH
- receptory cytoplazmatické a nukleární MeSH
- steroidní receptory MeSH