Nejvíce citovaný článek - PubMed ID 27883965
Frequency-independent characteristics of high-frequency oscillations in epileptic and non-epileptic regions
The electrophysiological EEG features such as high frequency oscillations, spikes and functional connectivity are often used for delineation of epileptogenic tissue and study of the normal function of the brain. The epileptogenic activity is also known to be suppressed by cognitive processing. However, differences between epileptic and healthy brain behavior during rest and task were not studied in detail. In this study we investigate the impact of cognitive processing on epileptogenic and non-epileptogenic hippocampus and the intracranial EEG features representing the underlying electrophysiological processes. We investigated intracranial EEG in 24 epileptic and 24 non-epileptic hippocampi in patients with intractable focal epilepsy during a resting state period and during performance of various cognitive tasks. We evaluated the behavior of features derived from high frequency oscillations, interictal epileptiform discharges and functional connectivity and their changes in relation to cognitive processing. Subsequently, we performed an analysis whether cognitive processing can contribute to classification of epileptic and non-epileptic hippocampus using a machine learning approach. The results show that cognitive processing suppresses epileptogenic activity in epileptic hippocampus while it causes a shift toward higher frequencies in non-epileptic hippocampus. Statistical analysis reveals significantly different electrophysiological reactions of epileptic and non-epileptic hippocampus during cognitive processing, which can be measured by high frequency oscillations, interictal epileptiform discharges and functional connectivity. The calculated features showed high classification potential for epileptic hippocampus (AUC = 0.93). In conclusion, the differences between epileptic and non-epileptic hippocampus during cognitive processing bring new insight in delineation between pathological and physiological processes. Analysis of computed iEEG features in rest and task condition can improve the functional mapping during pre-surgical evaluation and provide additional guidance for distinguishing between epileptic and non-epileptic structure which is absolutely crucial for achieving the best possible outcome with as little side effects as possible.
- Klíčová slova
- cognitive processing, functional connectivity, high frequency oscillation (HFO), hippocampus, interictal epileptiform discharge, pharmacoresistant epilepsy,
- Publikační typ
- časopisecké články MeSH
Hippocampal high-frequency electrographic activity (HFOs) represents one of the major discoveries not only in epilepsy research but also in cognitive science over the past few decades. A fundamental challenge, however, has been the fact that physiological HFOs associated with normal brain function overlap in frequency with pathological HFOs. We investigated the impact of a cognitive task on HFOs with the aim of improving differentiation between epileptic and non-epileptic hippocampi in humans. Hippocampal activity was recorded with depth electrodes in 15 patients with focal epilepsy during a resting period and subsequently during a cognitive task. HFOs in ripple and fast ripple frequency ranges were evaluated in both conditions, and their rate, spectral entropy, relative amplitude and duration were compared in epileptic and non-epileptic hippocampi. The similarity of HFOs properties recorded at rest in epileptic and non-epileptic hippocampi suggests that they cannot be used alone to distinguish between hippocampi. However, both ripples and fast ripples were observed with higher rates, higher relative amplitudes and longer durations at rest as well as during a cognitive task in epileptic compared with non-epileptic hippocampi. Moreover, during a cognitive task, significant reductions of HFOs rates were found in epileptic hippocampi. These reductions were not observed in non-epileptic hippocampi. Our results indicate that although both hippocampi generate HFOs with similar features that probably reflect non-pathological phenomena, it is possible to differentiate between epileptic and non-epileptic hippocampi using a simple odd-ball task.
- MeSH
- dospělí MeSH
- elektroencefalografie přístrojové vybavení MeSH
- epilepsie temporálního laloku diagnóza patofyziologie terapie MeSH
- hipokampus patofyziologie MeSH
- implantované elektrody MeSH
- kognice fyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mozkové vlny fyziologie MeSH
- neuropsychologické testy MeSH
- refrakterní epilepsie diagnóza patofyziologie terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- pozorovací studie MeSH
- práce podpořená grantem MeSH
High-frequency oscillations (HFOs: 100 - 600 Hz) have been widely proposed as biomarkers of epileptic brain tissue. In addition, HFOs over a broader range of frequencies spanning 30 - 2000 Hz are potential biomarkers of both physiological and pathological brain processes. The majority of the results from humans with focal epilepsy have focused on HFOs recorded directly from the brain with intracranial EEG (iEEG) in the high gamma (65 - 100 Hz), ripple (100 - 250 Hz), and fast ripple (250 - 600 Hz) frequency ranges. These results are supplemented by reports of HFOs recorded with iEEG in the low gamma (30 - 65Hz) and very high frequency (500 - 2000 Hz) ranges. Visual detection of HFOs is laborious and limited by poor inter-rater agreement; and the need for accurate, reproducible automated HFOs detection is well recognized. In particular, the clinical translation of HFOs as a biomarker of the epileptogenic brain has been limited by the ability to reliably detect and accurately classify HFOs as physiological or pathological. Despite these challenges, there has been significant progress in the field, which is the subject of this review. Furthermore, we provide data and corresponding analytic code in an effort to promote reproducible research and accelerate clinical translation.
- Publikační typ
- časopisecké články MeSH