Most cited article - PubMed ID 28401310
The efficacy of periodised resistance training on neuromuscular adaptation in older adults
BACKGROUND: Muscle strength and postural control are essential components for performing daily living activities, particularly in older adults, and can therefore serve as screening tools for assessing fall risk in this population. METHODS: The aim of this quasi-experimental study was to evaluate the impact of a 12-week exercise intervention followed by a 2-week detraining period on lower limb strength and postural stability in older adults. The study involved 38 community-dwelling participants of Central European origin over 60 years of age. Participants underwent the measurements consisting of assessments of knee flexors and extensors strength (isokinetic dynamometer, 90° range of motion, 60°/s angular velocity, Humac Norm CSMI, Stoughton MA, USA), toe grip strength (toe grip dynamometer, Takei Scientific Instruments, Niigata, Japan), and postural stability (narrow stand, 30 s, Kistler, Switzerland). Testing was repeated three times during the study (pre-intervention, post-intervention, and post-detraining). Participants were separated into 3 groups according to the type of training: resistance training group (n = 13), proprioceptive training group (n = 14), and endurance training group (n = 11). The intervention program lasted 12 weeks, two 60-min sessions per week. A linear mixed model (LMM) predicted a change in postural stability after the resistance, proprioceptive, and endurance exercise interventions were applied. RESULTS: Results showed that knee extensor strength normalized to body mass significantly increased in the resistance training group post-intervention (p = 0.01). Toe grip strength was significantly higher after the intervention in the endurance training group (p = 0.02). A statistically significant increase in knee flexor strength was observed in the proprioceptive training group (p = 0.01). The 2-weeks detraining period revealed no statistically significant loss in training gains. The LMM found different predictions of postural stability changes related to knee extensor strength after each type of training intervention. The final LMM model explains well the variability of the dependent variable R2 = 0.866. CONCLUSIONS: These results highlight the unique characteristics of specific exercise interventions in enhancing muscular strength and postural stability, which are critical for fall prevention among older adults.
- Keywords
- Aged, Falls prevention, Female, Male, Muscle strength, Postural balance, Resistance training,
- MeSH
- Time Factors MeSH
- Exercise * physiology MeSH
- Lower Extremity * physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Linear Models MeSH
- Resistance Training * methods MeSH
- Postural Balance * physiology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Muscle Strength * physiology MeSH
- Exercise Therapy * methods MeSH
- Accidental Falls prevention & control MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
BACKGROUND: The aging process is associated with a progressive decline of neuromuscular function, increased risk of falls and fractures, impaired functional performance, and loss of independence. Plyometric training may mitigate or even reverse such age-related deterioration; however, little research on the effects of plyometric exercises has been performed in older adults. OBJECTIVE: The objective of this systematic review was to evaluate the safety and efficacy of plyometric training in older adults. METHODS: Papers reporting on randomized trials of plyometric training in older adults (≥ 60 years) and published up to December 2017 were sought in the PubMed, SPORTDiscus, Scopus, and EMBASE databases, and their methodological quality was assessed using the Physiotherapy Evidence Database (PEDro) scale. A narrative synthesis of the findings is presented in this systematic review. RESULTS: Of the 2236 identified papers, 18 were included in the review, reporting on 12 different studies with a mean PEDro score of 6.0 (range 4-7). Altogether, 289 subjects (176 females and 113 males) were included in 15 intervention groups with plyometric components (n = 8-36 per group); their mean age ranged from 58.4 to 79.4 years. The plyometric training lasted from 4 weeks to 12 months. Muscular strength, bone health, body composition, postural stability, and jump and physical performance were the most often reported outcomes. No study reported increased occurrence of injuries or other adverse events related to plyometric exercises. CONCLUSION: Plyometric training is a feasible and safe training option with potential for improving various performance, functional, and health-related outcomes in older persons.
- MeSH
- Patient Safety MeSH
- Lower Extremity physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Plyometric Exercise * MeSH
- Randomized Controlled Trials as Topic MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Aged MeSH
- Publication type
- Journal Article MeSH
- Systematic Review MeSH