Most cited article - PubMed ID 28467616
Xylem resistance to embolism: presenting a simple diagnostic test for the open vessel artefact
The genus Quercus comprises important species in forestry not only for their productive value but also for their ability to withstand drought. Hence an evaluation of inter- and intraspecific variation in drought tolerance is important for selecting the best adapted species and provenances for future afforestation. The presence of long vessels makes it difficult to assess xylem vulnerability to embolism in oak. Thanks to the development of an in situ flow centrifuge equipped with a large rotor, we quantified (i) the between species variability of embolism resistance in four native and two exotic species of oaks in Europe and (ii) the within species variability in Quercus petraea. Embolism resistance varied significantly among species, with the pressure inducing 50% loss of hydraulic conductivity (P50 ) ranging between - 7.0 and -4.2 MPa. Species native to the Mediterranean region were more resistant than pan-European species. In contrast, intraspecific variability in embolism resistance in Q. petraea was low within provenances and null among provenances. A positive correlation between P50 and vessel diameter among the six oak species indicates that the more embolism resistant species had narrower xylem vessels. However, this tradeoff between hydraulic efficiency and safety was not observed between Q. petraea provenances.
- Keywords
- climate change, drought resistance, oaks, plant hydraulics, xylem embolism,
- Publication type
- Journal Article MeSH
Many studies have reported that hydraulic properties vary considerably between tree species, but little is known about their intraspecific variation and, therefore, their capacity to adapt to a warmer and drier climate. Here, we quantify phenotypic divergence and clinal variation for embolism resistance, hydraulic conductivity and branch growth, in four tree species, two angiosperms (Betula pendula, Populus tremula) and two conifers (Picea abies, Pinus sylvestris), across their latitudinal distribution in Europe. Growth and hydraulic efficiency varied widely within species and between populations. The variability of embolism resistance was in general weaker than that of growth and hydraulic efficiency, and very low for all species but Populus tremula. In addition, no and weak support for a safety vs. efficiency trade-off was observed for the angiosperm and conifer species, respectively. The limited variability of embolism resistance observed here for all species except Populus tremula, suggests that forest populations will unlikely be able to adapt hydraulically to drier conditions through the evolution of embolism resistance.
- MeSH
- Phenotype MeSH
- Forests MeSH
- Droughts * MeSH
- Climate MeSH
- Trees classification physiology MeSH
- Water * MeSH
- Xylem physiology MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Europe MeSH
- Names of Substances
- Water * MeSH