Nejvíce citovaný článek - PubMed ID 28706695
G-quadruplexes (G4s) formed within RNA are emerging as promising targets for therapeutic intervention in cancer, neurodegenerative disorders and infectious diseases. Sequences containing a succession of short GG blocks, or uneven G-tract lengths unable to form three-tetrad G4s (GG motifs), are overwhelmingly more frequent than canonical motifs involving multiple GGG blocks. We recently showed that DNA is not able to form stable two-tetrad intramolecular parallel G4s. Whether RNA GG motifs can form intramolecular G4s under physiological conditions and play regulatory roles remains a burning question. In this study, we performed a systematic analysis and experimental evaluation of a number of biologically important RNA regions involving RNA GG motifs. We show that most of these motifs do not form stable intramolecular G4s but need to dimerize to form stable G4 structures. The strong tendency of RNA GG motif G4s to associate may participate in RNA-based aggregation under conditions of cellular stress.
- MeSH
- dimerizace MeSH
- G-kvadruplexy * MeSH
- genetická transkripce MeSH
- lidé MeSH
- nukleotidové motivy * MeSH
- RNA * chemie metabolismus genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- RNA * MeSH
Guanine-quadruplex structures (G4) are unusual nucleic acid conformations formed by guanine-rich DNA and RNA sequences and known to control gene expression mechanisms, from transcription to protein synthesis. So far, a number of molecules that recognize G4 have been developed for potential therapeutic applications in human pathologies, including cancer and infectious diseases. These molecules are called G4 ligands. When the biological effects of G4 ligands are studied, the analysis is often limited to nucleic acid targets. However, recent evidence indicates that G4 ligands may target other cellular components and compartments such as lysosomes and mitochondria. Here, we summarize our current knowledge of the regulation of lysosome by G4 ligands, underlying their potential functional impact on lysosome biology and autophagic flux, as well as on the transcriptional regulation of lysosomal genes. We outline the consequences of these effects on cell fate decisions and we systematically analyzed G4-prone sequences within the promoter of 435 lysosome-related genes. Finally, we propose some hypotheses about the mechanisms involved in the regulation of lysosomes by G4 ligands.
- Klíčová slova
- Autophagy, TFEB, guanine-quadruplex, lysosome membrane permeabilization, transcriptional regulation,
- MeSH
- autofagie * MeSH
- DNA metabolismus MeSH
- G-kvadruplexy * MeSH
- guanin MeSH
- lidé MeSH
- ligandy MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- guanin MeSH
- ligandy MeSH
Recently, the 1H-detected in-cell NMR spectroscopy has emerged as a unique tool allowing the characterization of interactions between nucleic acid-based targets and drug-like molecules in living human cells. Here, we assess the application potential of 1H and 19F-detected in-cell NMR spectroscopy to profile drugs/ligands targeting DNA G-quadruplexes, arguably the most studied class of anti-cancer drugs targeting nucleic acids. We show that the extension of the original in-cell NMR approach is not straightforward. The severe signal broadening and overlap of 1H in-cell NMR spectra of polymorphic G-quadruplexes and their complexes complicate their quantitative interpretation. Nevertheless, the 1H in-cell NMR can be used to identify drugs that, despite strong interaction in vitro, lose their ability to bind G-quadruplexes in the native environment. The in-cell NMR approach is adjusted to a recently developed 3,5-bis(trifluoromethyl)phenyl probe to monitor the intracellular interaction with ligands using 19F-detected in-cell NMR. The probe allows dissecting polymorphic mixture in terms of number and relative populations of individual G-quadruplex species, including ligand-bound and unbound forms in vitro and in cellulo. Despite the probe's discussed limitations, the 19F-detected in-cell NMR appears to be a promising strategy to profile G-quadruplex-ligand interactions in the complex environment of living cells.
- Klíčová slova
- BRACO19, Bcl2, G-quadruplex, KRAS, NMM, PhenDC3, drug, in-cell NMR, ligand, telomeric DNA,
- MeSH
- DNA chemie účinky léků MeSH
- G-kvadruplexy účinky léků MeSH
- konformace nukleové kyseliny účinky léků MeSH
- léčivé přípravky chemie MeSH
- lidé MeSH
- ligandy MeSH
- magnetická rezonanční spektroskopie MeSH
- molekulární modely MeSH
- protony MeSH
- vazebná místa účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- DNA MeSH
- léčivé přípravky MeSH
- ligandy MeSH
- protony MeSH
We report here the in-cell NMR-spectroscopic observation of the binding of the cognate ligand 2'-deoxyguanosine to the aptamer domain of the bacterial 2'-deoxyguanosine-sensing riboswitch in eukaryotic cells, namely Xenopus laevis oocytes and in human HeLa cells. The riboswitch is sufficiently stable in both cell types to allow for detection of binding of the ligand to the riboswitch. Most importantly, we show that the binding mode established by in vitro characterization of this prokaryotic riboswitch is maintained in eukaryotic cellular environment. Our data also bring important methodological insights: Thus far, in-cell NMR studies on RNA in mammalian cells have been limited to investigations of short (<15 nt) RNA fragments that were extensively modified by protecting groups to limit their degradation in the intracellular space. Here, we show that the in-cell NMR setup can be adjusted for characterization of much larger (≈70 nt) functional and chemically non-modified RNA.
- Klíčová slova
- 2′-deoxyguanosine riboswitch, HeLa cells, RNA structures, aptamers, structural biology,
- MeSH
- aptamery nukleotidové chemie metabolismus MeSH
- HeLa buňky MeSH
- konfokální mikroskopie MeSH
- konformace nukleové kyseliny MeSH
- lidé MeSH
- ligandy MeSH
- nukleární magnetická rezonance biomolekulární * MeSH
- riboswitch MeSH
- RNA chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- aptamery nukleotidové MeSH
- ligandy MeSH
- riboswitch MeSH
- RNA MeSH
G-quadruplexes (G4) are non-canonical DNA and/or RNA secondary structures formed in guanine-rich regions. Given their over-representation in specific regions in the genome such as promoters and telomeres, they are likely to play important roles in key processes such as transcription, replication or RNA maturation. Putative G4-forming sequences (G4FS) have been reported in humans, yeast, bacteria, viruses and many organisms. Here we present the first mapping of G-quadruplex sequences in Dictyostelium discoideum, the social amoeba. 'Dicty' is an ameboid protozoan with a small (34 Mb) and extremely AT rich genome (78%). As a consequence, very few G4-prone motifs are expected. An in silico analysis of the Dictyostelium genome with the G4Hunter software detected 249-1055 G4-prone motifs, depending on G4Hunter chosen threshold. Interestingly, despite an even lower GC content (as compared to the whole Dicty genome), the density of G4 motifs in Dictyostelium promoters and introns is significantly higher than in the rest of the genome. Fourteen selected sequences located in important genes were characterized by a combination of biophysical and biochemical techniques. Our data show that these sequences form highly stable G4 structures under physiological conditions. Five Dictyostelium genes containing G4-prone motifs in their promoters were studied for the effect of a new G4-binding porphyrin derivative on their expression. Our results demonstrated that the new ligand significantly decreased their expression. Overall, our results constitute the first step to adopt Dictyostelium discoideum as a 'G4-poor' model for studies on G-quadruplexes.
- MeSH
- Dictyostelium genetika MeSH
- G-kvadruplexy * MeSH
- genom genetika MeSH
- konformace nukleové kyseliny MeSH
- počítačová simulace MeSH
- porfyriny genetika MeSH
- promotorové oblasti (genetika) * MeSH
- telomery genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- porfyriny MeSH
Guanine-rich DNA has the potential to fold into non-canonical G-quadruplex (G4) structures. Analysis of the genome of the social amoeba Dictyostelium discoideum indicates a low number of sequences with G4-forming potential (249-1055). Therefore, D. discoideum is a perfect model organism to investigate the relationship between the presence of G4s and their biological functions. As a first step in this investigation, we crystallized the dGGGGGAGGGGTACAGGGGTACAGGGG sequence from the putative promoter region of two divergent genes in D. discoideum. According to the crystal structure, this sequence folds into a four-quartet intramolecular antiparallel G4 with two lateral and one diagonal loops. The G-quadruplex core is further stabilized by a G-C Watson-Crick base pair and a A-T-A triad and displays high thermal stability (Tm > 90°C at 100 mM KCl). Biophysical characterization of the native sequence and loop mutants suggests that the DNA adopts the same structure in solution and in crystalline form, and that loop interactions are important for the G4 stability but not for its folding. Four-tetrad G4 structures are sparse. Thus, our work advances understanding of the structural diversity of G-quadruplexes and yields coordinates for in silico drug screening programs and G4 predictive tools.
- MeSH
- cirkulární dichroismus MeSH
- Dictyostelium genetika MeSH
- G-kvadruplexy * MeSH
- genom MeSH
- konformace nukleové kyseliny * MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- mutace MeSH
- nukleární magnetická rezonance biomolekulární MeSH
- promotorové oblasti (genetika) MeSH
- spektrofotometrie ultrafialová MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH