Nejvíce citovaný článek - PubMed ID 29139026
Structural elucidation of novel biomarkers of known metabolic disorders based on multistage fragmentation mass spectra
3-Hydroxy-3-methylglutaryl-coenzyme A lyase deficiency (HMGCLD) is a rare autosomal recessively inherited metabolic disorder. Patients suffer from avoidable neurologically devastating metabolic decompensations and thus would benefit from newborn screening (NBS). The diagnosis is currently made by measuring dry blood spot acylcarnitines (C5OH and C6DC) followed by urinary organic acid profiling for the differential diagnosis from several other disorders. Using untargeted metabolomics (reversed-phase UHPLC coupled to an Orbitrap Elite hybrid mass spectrometer) of plasma samples from 5 HMGCLD patients and 19 age-matched controls, we found 3-methylglutaconic acid and 3-hydroxy-3-methylglutaric acid, together with 3-hydroxyisovalerylcarnitine as the most discriminating metabolites between the groups. In order to evaluate the NBS potential of these metabolites we quantified the most discriminating metabolites from untargeted metabolomics in 23 blood spots from 4 HMGCLD patients and 55 controls by UHPLC tandem mass spectrometry. The results provide a tool for expanded NBS of HMGCLD using tandem mass spectrometry. Selected reaction monitoring transition 262/85 could be used in a first-tier NBS analysis to screen for elevated 3-hydroxyisovalerylcarnitine. In a positive case, a second-tier analysis of 3-hydroxy-3-methylglutaric acid and 3-methylglutaconic acid in a dry blood spot using UHPLC tandem mass spectrometry instruments confirms the diagnosis. In conclusion, we describe the identification of new diagnostic biomarkers for HMGCLD and their application in NBS in dry blood spots. By using second-tier testing, all patients with HMGCLD were unequivocally and correctly diagnosed.
- Klíčová slova
- 3‐hydroxy‐3‐methylglutaryl‐coenzyme A lyase deficiency, HMG‐CoA lyase, acylcarnitines, biomarkers, metabolomics, newborn screening, organic acids,
- Publikační typ
- časopisecké články MeSH
Data outliers can carry very valuable information and might be most informative for the interpretation. Nevertheless, they are often neglected. An algorithm called cellwise outlier diagnostics using robust pairwise log ratios (cell-rPLR) for the identification of outliers in single cell of a data matrix is proposed. The algorithm is designed for metabolomic data, where due to the size effect, the measured values are not directly comparable. Pairwise log ratios between the variable values form the elemental information for the algorithm, and the aggregation of appropriate outlyingness values results in outlyingness information. A further feature of cell-rPLR is that it is useful for biomarker identification, particularly in the presence of cellwise outliers. Real data examples and simulation studies underline the good performance of this algorithm in comparison with alternative methods.
- Klíčová slova
- biomarker, cellwise outliers, cell‐rPLR, log ratio, metabolomics, robust method,
- Publikační typ
- časopisecké články MeSH