Nejvíce citovaný článek - PubMed ID 29149697
Characteristics of motor speech phenotypes in multiple sclerosis
INTRODUCTION: Dysarthria, a motor speech disorder caused by muscle weakness or paralysis, severely impacts speech intelligibility and quality of life. The condition is prevalent in motor speech disorders such as Parkinson's disease (PD), atypical parkinsonism such as progressive supranuclear palsy (PSP), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). Improving intelligibility is not only an outcome that matters to patients but can also play a critical role as an endpoint in clinical research and drug development. This study validates a digital measure for speech intelligibility, the ki: SB-M intelligibility score, across various motor speech disorders and languages following the Digital Medicine Society (DiMe) V3 framework. METHODS: The study used four datasets: healthy controls (HCs) and patients with PD, HD, PSP, and ALS from Czech, Colombian, and German populations. Participants' speech intelligibility was assessed using the ki: SB-M intelligibility score, which is derived from automatic speech recognition (ASR) systems. Verification with inter-ASR reliability and temporal consistency, analytical validation with correlations to gold standard clinical dysarthria scores in each disease, and clinical validation with group comparisons between HCs and patients were performed. RESULTS: Verification showed good to excellent inter-rater reliability between ASR systems and fair to good consistency. Analytical validation revealed significant correlations between the SB-M intelligibility score and established clinical measures for speech impairments across all patient groups and languages. Clinical validation demonstrated significant differences in intelligibility scores between pathological groups and healthy controls, indicating the measure's discriminative capability. DISCUSSION: The ki: SB-M intelligibility score is a reliable, valid, and clinically relevant tool for assessing speech intelligibility in motor speech disorders. It holds promise for improving clinical trials through automated, objective, and scalable assessments. Future studies should explore its utility in monitoring disease progression and therapeutic efficacy as well as add data from further dysarthrias to the validation.
BACKGROUND: Impairment of higher language functions associated with natural spontaneous speech in multiple sclerosis (MS) remains underexplored. OBJECTIVES: We presented a fully automated method for discriminating MS patients from healthy controls based on lexical and syntactic linguistic features. METHODS: We enrolled 120 MS individuals with Expanded Disability Status Scale ranging from 1 to 6.5 and 120 age-, sex-, and education-matched healthy controls. Linguistic analysis was performed with fully automated methods based on automatic speech recognition and natural language processing techniques using eight lexical and syntactic features acquired from the spontaneous discourse. Fully automated annotations were compared with human annotations. RESULTS: Compared with healthy controls, lexical impairment in MS consisted of an increase in content words (p = 0.037), a decrease in function words (p = 0.007), and overuse of verbs at the expense of noun (p = 0.047), while syntactic impairment manifested as shorter utterance length (p = 0.002), and low number of coordinate clause (p < 0.001). A fully automated language analysis approach enabled discrimination between MS and controls with an area under the curve of 0.70. A significant relationship was detected between shorter utterance length and lower symbol digit modalities test score (r = 0.25, p = 0.008). Strong associations between a majority of automatically and manually computed features were observed (r > 0.88, p < 0.001). CONCLUSION: Automated discourse analysis has the potential to provide an easy-to-implement and low-cost language-based biomarker of cognitive decline in MS for future clinical trials.
- Klíčová slova
- automated linguistic analysis, language, multiple sclerosis, nature language processing, spontaneous discourse,
- Publikační typ
- časopisecké články MeSH