Most cited article - PubMed ID 30933374
Gallbladder Dyskinesia Is Associated With an Impaired Postprandial Fibroblast Growth Factor 19 Response in Critically Ill Patients
BACKGROUND: Extended liver resection is the only treatment option for perihilar cholangiocarcinoma (pCCA). Bile salts and the gut hormone FGF19, both promoters of liver regeneration (LR), have not been investigated in patients undergoing resection for pCCA. We aimed to evaluate the bile salt-FGF19 axis perioperatively in pCCA and study its effects on LR. METHODS: Plasma bile salts, FGF19, and C4 (bile salt synthesis marker) were assessed in patients with pCCA and controls (colorectal liver metastases), before and after resection on postoperative days (PODs) 1, 3, and 7. Hepatic bile salts were determined in intraoperative liver biopsies. RESULTS: Partial liver resection in pCCA elicited a sharp decline in bile salt and FGF19 plasma levels on POD 1 and remained low thereafter, unlike in controls, where bile salts rose gradually. Preoperatively, suppressed C4 in pCCA normalized postoperatively to levels similar to those in the controls. The remnant liver volume and postoperative bilirubin levels were negatively associated with postoperative C4 levels. Furthermore, patients who developed postoperative liver failure had nearly undetectable C4 levels on POD 7. Hepatic bile salts strongly predicted hyperbilirubinemia on POD 7 in both groups. Finally, postoperative bile salt levels on day 7 were an independent predictor of LR. CONCLUSIONS: Partial liver resection alters the bile salt-FGF19 axis, but its derailment is unrelated to LR in pCCA. Postoperative monitoring of circulating bile salts and their production may be useful for monitoring LR.
- MeSH
- Fibroblast Growth Factors * blood MeSH
- Hepatectomy * MeSH
- Liver metabolism surgery MeSH
- Klatskin Tumor * surgery pathology blood MeSH
- Middle Aged MeSH
- Humans MeSH
- Bile Duct Neoplasms * surgery pathology blood MeSH
- Liver Regeneration * physiology MeSH
- Aged MeSH
- Case-Control Studies MeSH
- Bile Acids and Salts * blood metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- FGF19 protein, human MeSH Browser
- Fibroblast Growth Factors * MeSH
- Bile Acids and Salts * MeSH
BACKGROUND AND AIMS: Automated chyme reinfusion (CR) in patients with intestinal failure (IF) and a temporary double enterostomy (TDE) restores intestinal function and protects against liver injury, but the mechanisms are incompletely understood. The aim was to investigate whether the beneficial effects of CR relate to functional recovery of enterohepatic signaling through the bile salt-FGF19 axis. APPROACH AND RESULTS: Blood samples were collected from 12 patients, 3 days before, at start, and 1, 3, 5, and 7 weeks after CR initiation. Plasma FGF19, total bile salts (TBS), 7-α-hydroxy-4-cholesten-3-one (C4; a marker of bile salt synthesis), citrulline (CIT), bile salt composition, liver tests, and nutritional risk indices were determined. Paired small bowel biopsies prior to CR and after 21 days were taken, and genes related to bile salt homeostasis and enterocyte function were assessed. CR induced an increase in plasma FGF19 and decreased C4 levels, indicating restored regulation of bile salt synthesis through endocrine FGF19 action. TBS remained unaltered during CR. Intestinal farnesoid X receptor was up-regulated after 21 days of CR. Secondary and deconjugated bile salt fractions were increased after CR, reflecting restored microbial metabolism of host bile salts. Furthermore, CIT and albumin levels gradually rose after CR, while abnormal serum liver tests normalized after CR, indicating restored intestinal function, improved nutritional status, and amelioration of liver injury. CR increased gene transcripts related to enterocyte number, carbohydrate handling, and bile salt homeostasis. Finally, the reciprocal FGF19/C4 response after 7 days predicted the plasma CIT time course. CONCLUSIONS: CR in patients with IF-TDE restored bile salt-FGF19 signaling and improved gut-liver function. Beneficial effects of CR are partly mediated by recovery of the bile salt-FGF19 axis and subsequent homeostatic regulation of bile salt synthesis.
- MeSH
- Anastomosis, Surgical adverse effects MeSH
- Enteral Nutrition methods MeSH
- Enterostomy adverse effects MeSH
- Fibroblast Growth Factors blood metabolism MeSH
- Gastrointestinal Contents * MeSH
- Middle Aged MeSH
- Humans MeSH
- Nutritional Status MeSH
- Prospective Studies MeSH
- Intestinal Failure blood etiology metabolism therapy MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Treatment Outcome MeSH
- Bile Acids and Salts blood metabolism MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Clinical Trial, Phase II MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- FGF19 protein, human MeSH Browser
- Fibroblast Growth Factors MeSH
- Bile Acids and Salts MeSH